
Eoin Woods
Barclays Global Investors

www.eoinwoods.info
www.barclaysglobal.com/careers

Using Design Principles
to Unify

Architecture and Design

2

About Me

•Software architect at Barclays Global Investors
• head of the Application Architecture group

• aligned with Equities and Capital Markets area

• responsible for Apex, a new portfolio management system

•Software architect for ~10 years

•Author of “Software Systems Architecture” book with
Nick Rozanski

•IASA and BCS Fellow, IET member, CEng

3

Software Development Tribes

•Enterprise Architects
• organisation wide technical decisions
• standards, policies, application landscapes

•Application Architects
• system wide technical decisions
• system design, patterns, cross-cutting concerns

•Development Teams
• all local design decisions with a system
• oh, and all the real work!

4

EA, AA and Development Teams

Enterprise Architecture Decisions

Applica2on ‘A’
Architecture
Decisions

Applica2on ‘C’
Architecture
Decisions

Applica2on ‘B’
Architecture
Decisions

D
es
ig
n

D
ec
is
io
ns

D
es
ig
n

D
ec
is
io
ns

D
es
ig
n

D
ec
is
io
ns

D
es
ig
n

D
ec
is
io
ns

D
es
ig
n

D
ec
is
io
ns

D
es
ig
n

D
ec
is
io
ns

5

A Common Problem

EA define strategic policies and standards ...

... which application architects find restrictive and so
largely ignore as they create application
architectures ...

... which are largely ignored by development teams
who are under pressure to get this release of their
system delivered on time

6

The Reason - Differing Scope and Priorities

EA • long term cost/quality/general time to market
• organisation wide scope
• aligning with & supporting organisation goals

AA • long term cost/quality/system delivery time
• single system scope
• intra-system standardisation

Teams • short term cost/quality/system delivery time
• single system scope
• standardisation only for development speed

7

The Reason - Differing Focus and Priorities

Scope

Time Horizon

Enterprise
Architects

Applica2on
Architects

Development
Team

8

An Example

•EA want systems linked via standard patterns and
middleware with a service catalogue

•Application architects want easy integration, but
don’t want a service catalogue and want to select
and vary details by system

•Teams don’t want any of this and want to get data
into their systems as easily as possible (e.g. remote
database access)

9

Underlying Problem

•Differing priorities are caused by a lack of common
understanding

•AA doesn’t understand what is guiding EA decision
making

•Developers don’t understand what is guiding AA
decision making (let alone EA decisions!)

•No concept being used to communicate context &
rationale

•Decision making separated from implementation

What could we do to fix this?

10

Design Principles

•What is a “principle” ?
• a fundamental truth or proposition serving as the foundation
for belief or action [OED]

• a comprehensive and fundamental law, doctrine or
assumption [Webster's]

•So a design principle is a fundamental “truth” or
“law” that serves as the foundation for design action
(i.e. guides design decisions)

• a unifying concept for software development?

11

Aside: Principles vs. Patterns vs. Decisions

•Decision
• makes a concrete design decision
• is bound to a specific design context

•Pattern
• makes a set of concrete design decisions
• is unbound, but with applicability defined

•Principle
• places a constraint on design decisions
• is unbound, but may need applicability defined

12

Design Principles in Context

Enterprise Architecture Principles

Applica2on Architecture Principles

System Design Decisions

Organisa2on Priori2es & Goals

Fe
ed

b
ac

k

13

Principles as a Unifying Concept

EA

S/W
Developer

EA Principles

AA Principles

Organisa2on Goals

AA
Business
Principles

14

Principles as a Unifying Concept

EA use business and organisational principles and
priorities to create EA principles and design
decisions

AA use EA principles and business principles to
create application architecture principles and
design decisions

Teams use application architecture principles and
business principles to create design decisions

15

Principles Providing Traceability

EA Principle: minimise the number of security
interactions needed in the web stores. Use shared
single sign on.

SA Principle: only authenticate users when account is
accessed; use (internal) WebAuthService to do so.

Design Decision: implement a WebAuthService,
use shared customer account service for logins

Goal: minimize abandoned web-store
transactions (i.e. preserve revenue)

Rationale

Principles allow a design decision to be traced to a business goal

16

What do Principles Look Like?

•Organisational goal:
• G1: we want to have build/buy flexibility and long term
application vendor flexibility (and are prepared to pay for it)

•EA principles:
• EP1: avoid design-time inter-system dependencies

• EP2: integrate using a neutral data format

• EP3: use 3rd party formats, then ours, then system specific

• EP4: prefer messaging over RPC for integration

[All traceable back to goal G1]

(continued ...)

17

What do Principles Look Like?

•Application architecture principles:
• AP1: Use in-house schema XML messaging over pub/sub for
external integration [EP2, EP4]

• AP2: Define external services using DTO classes not domain
classes [EP1]

• AP3: Where synchronous integration is essential, use SOAP
based web service (using code generator) [EP1 + exception]

18

The Result of Using Principles

•Informed design decisions:
• Implement AttributionData service using local XML
schema XML messages over Tibco EMS
[AP1 with exception for local XML schema]

• Access BenchmarkDefinitions service using PM-Schema
XML messages over Tibco EMS
[AP1, AP2, AP3]

• Retrieve prices via C++ vendor API
[exception required for vendor & system dependency]

19

When to Violate a Principle

•Principles can’t always be followed
• but when broken must be broken for justifiable reasons

• i.e. benefits have to outweigh the costs

•This doesn’t (necessarily) reduce their usefulness
• reason for breaking a principle is valuable design information

• a large number of violations signal the need to revisit the
principle concerned

• capturing the violation signals the non-standard nature of
the decision

20

Types of Design Principles

•Define a goal
• “single customer logon for all of our web sites”

•Indicate a preference
• “prefer 3rd party data formats, over in-house, over custom”

•Avoid a specific technical problem
• “identify what varies then encapsulate it” [GoF]

•Encourage a way of working
• “don’t repeat yourself” (DRY) [H&T]

•Remind people of useful proven observations
• “abstractions live longer than details” [H&T]

21

Good Design Principles

not just a truism; would the opposite
ever be the case?

Significant

possible to check if you’ve followed it
and where the exceptions are

Testable

comprehensible by all of the necessary
stakeholders

Well Articulated

rational, logical, consistentReasoned

stated for a definite purpose, useful
guide for decision making

Constructive

[Nick Rozanski]

22

Why Use Design Principles?

Why not just capture design decisions or patterns?

decisions and pa+erns give people solu1ons;
principles help them design their own

Guides future decisionsSolves a single problem

General as possibleSpecific to context

Aid understandingDefine an action

Minimally constrainingFully defined

A constraint on decisionsConcrete decision

PrinciplePattern or Decision

23

Why Use Design Principles?

•Principles unify the decision making process
• link decisions made from goals down to software design

•Principles can guide design
• provide context and constraints for decisions

•Principles can justify decisions
• e.g. need for multi-node software support from principle that
all systems must allow for HA deployments in the future

•Principles can justify costs and time
• this will take longer, but we understand the underlying goal

•Principles should be developed collaboratively
• so achieving buy-in, neutrality & good coverage

24

Difficult Aspects of Design Principles

•Identification
• people find non-trivial principles hard to find (avoid truisms)
• examples and experience needed

•Description
• difficult to be clear, complete, succinct & understandable

•Validation
• very difficult to know if you have the right set
• difficult to know if they’ll be valuable

•Communicating
• often difficult for people to understand & internalise
• finding the right customer

25

Fruitful Research Topics

•Identification
• where do principles come from?
• why do people find them hard to articulate?

•Representation
• how do you write a principle down?
• how do you put it in a database and use it?

•Validation
• what makes a good principle?
• are principles really valuable? why? how valuable?

26

Teaching Implications

•What are the implications for the education and
training of software engineers?

• understanding of principles

• identification of principles

• representation of principles

• use of principles in architecture and design

• are there standard sets that can be taught?

27

Summary

•Principles provide “laws” to guide the design process
• can be used at many different levels

• less constraining than patterns or decisions

•Principles should provide traceability
• links back to more abstract principle or an underlying goal

• justifies decisions by reference to a particular context

•Common concept allows unification through design
• from business through EA, AA and into software design

•A lot to do in order to make principle use widespread
• work needed in capture, analysis, representation &
education

28

Eoin Woods
www.eoinwoods.info

contact@eoinwoods.info

Questions and Comments?

