
Forces on Architecture Decisions – A Viewpoint

Uwe van Heesch
University of Groningen,

Fontys University of Applied Sciences

Venlo, The Netherlands

uwe@vanheesch.net

Paris Avgeriou
University of Groningen

Groningen, The Netherlands

paris@cs.rug.nl

Rich Hilliard
Freelance software systems architect

USA

r.hilliard@computer.org

Abstract— In this paper, the notion of forces as influences upon
architecture decisions is introduced. To facilitate the documenta-
tion of forces as a part of architecture descriptions, we specify a
decision forces viewpoint, which extends our existing framework
for architecture decisions, following the conventions of the inter-
national architecture description standard ISO/IEC/IEEE 42010.
The applicability of the viewpoint was validated in three case
studies, in which senior software engineering students used
it to document decisions in software projects; two of which
conducted for industrial customers. The results show that the
forces viewpoint is a well-received documentation approach,
satisfying stakeholder concerns related to traceability between
decision forces and architecture decisions.

I. INTRODUCTION

Decisions, and the rationale for those decisions, are perva-

sive elements of software architecture [1]. Because of their

crucial role, architecture decisions and rationale need to be

captured and managed throughout the lifetime of a software

architecture, as with any other important part of the architec-

ture documentation. Moreover, decisions and their rationale

should be documented in a form that integrates with the

documentation of other types of architecture information in

order to provide traceability between decisions and those other

types.

Kruchten proposed to capture the rationale behind an ar-

chitecture using architecture decisions as first-class entities

of architecture description [1]. To date, different approaches

have been presented to practically realize the documentation

of architecture decisions; prominent among those are decision

templates, as introduced by Tyree and Akerman [2] (see [3] for

a discussion of various decision documentation approaches).

ISO/IEC/IEEE 42010 [4] addresses the areas of recording

architecture decisions and architecture rationale as part of

an architecture description, specifying general requirements

for decision documentation, but not particular mechanisms.

As with any other kind of architecture information, architec-

ture decisions and rationale pertain to different stakeholders’

concerns. Consequently, a single form of representation is

often not applicable to all concerns in a usable form; instead

different forms of representation, arranged as architecture
views, can each effectively address a subset of concerns.

Since the earliest work on the foundations of software archi-

tecture by Perry and Wolf [5], and exemplified by Kruchten’s

4+1 model [6], the idea of documenting software architecture

using multiple views has been widely adopted. IEEE Std

1471:2000 [7] first codified this practice of multiple views,

with each view addressing specific concerns of interest to

system stakeholders and introducing viewpoints to establish

the conventions used in each view.

Building on this practice, in our previous work, we intro-

duced a documentation framework for architecture decisions

using the conventions of ISO/IEC/IEEE 42010, containing

an initial set of four viewpoints for architecture decisions: a

decision detail viewpoint, a decision relationship viewpoint,

a decision chronology viewpoint and a decision stakeholder

involvement viewpoint, each dedicated to specific decision-

related concerns [3] (an example of a decision-related concern

is What decisions are dependent on decision D?.)

In this paper, we extend our earlier framework with the

decision forces viewpoint (or shortly forces viewpoint), which

is dedicated to establishing traceability between architecture

decisions, stakeholder concerns and the forces driving the

decisions. Forces, in this context, include traditional require-

ments, but they also take the experience and expertise of the

development team, as well as business and projects constraints,

into account. A force, in short, is a broad concept, capturing

anything that has a potential non-trivial impact of any kind on

an architect when making decisions.

The forces viewpoint was validated in three case studies

conducted with groups of senior students. Two of the groups

worked independently on industrial software projects; the third

group started an open source project as part of a module

on Java EE. The results are promising, as they show that

the forces viewpoint is well-received by the students, while

satisfying many decision-related stakeholder concerns. Further,

we learned that the forces viewpoint supports students in

following a systematic and rational decision making process,

when being created iteratively during the architecting process.

The rest of this paper is organized as follows. Section II

introduces the viewpoint framework and the basic ideas behind

ISO/IEC/IEEE 42010. In Section III, the decision forces

viewpoint is specified. Section IV reports on the case studies

conducted to validate the viewpoint. In the next section,

we briefly outline related work. Finally, in Section VI, we

conclude and present areas for future work.

II. A FRAMEWORK FOR ARCHITECTURE DECISIONS

In this section, the main ideas behind ISO/IEC/IEEE 42010

[4] and the framework for architecture decisions [3], which

2012 Joint Working Conference on Software Architecture & 6th European Conference on Software Architecture

978-0-7695-4827-2/12 $26.00 © 2012 IEEE

DOI 10.1109/WICSA-ECSA.212.18

101

were the basis for the development of the decision forces

viewpoint, will be briefly introduced.

A. ISO/IEC/IEEE 42010

ISO/IEC/IEEE 42010 is an international standard for the de-

scription of software architectures (and other kinds of system

architectures). It is based on a few principles:

1) an architecture description (AD) expresses an architec-

ture (of a system or other entity of interest);

2) an AD addresses the concerns of the system’s stakehold-

ers for that architecture.

3) the concerns drive the selection of the representation

conventions (called viewpoints) used to express the ar-

chitecture, each of which is dedicated to framing specific

concerns;

4) consistency between the views is maintained using cor-

respondence rules.

Building upon these principles, ISO/IEC/IEEE 42010 defines

the required contents of individual ADs, the form of architec-

ture description languages, and architecture frameworks.

B. Four viewpoints for architecture decisions

The framework for architecture decisions, introduced in our

previous work [3], consists of an initial set of four viewpoints,

each of which being dedicated to satisfying specific stake-

holder concerns related to architecture decisions.

The decision relationship viewpoint makes relationships

between architecture decisions explicit. Examples of decision

relationships are is caused by, depends on, or is alternative
to. Apart from relationships, views using this viewpoint doc-

ument the current state of each decision in the system (e.g.,

decided, approved, or rejected). The stakeholder involvement
viewpoint explains the responsibilities of specific stakeholders

in the decision-making process. For example, views of this

viewpoint show the stakeholders who proposed, confirmed,

or validated particular decisions. The decision chronologi-
cal viewpoint shows the evolution of architecture decisions

over time. It also depicts architecture iterations and their

endpoints (typically milestones, snapshots, or releases). The

chronological viewpoint is the only viewpoint with a temporal

component. All other types of views freeze a specific state of

the architecture.

Whereas the previously mentioned viewpoints focus on

specific aspects of architecture decisions to optimally frame

their related concerns, the decision detail viewpoint is an

aggregate viewpoint. This viewpoint combines the information

shown in all other viewpoints, by giving detailed information

about single architecture decisions. The detail viewpoint’s

model kind (a model kind establishes the conventions for all

models in the respective view), at the same time, acts as a

shared metamodel for all viewpoints in the framework.

The decision forces viewpoint, introduced in this paper,

extends this existing set of viewpoints focusing on trace-

ability between architecture decisions, stakeholder concerns,

and decision forces. It integrates seamlessly into the decision

framework and its shared metamodel.

III. DECISION FORCES VIEWPOINT

Views using the decision forces viewpoint make explicit the

relationships between architectural decisions and the forces

that influenced the architect when making the decisions out of

multiple alternatives. The term force is taken from the pattern

community, which uses forces to elaborate on the description

of a problem to be solved by a pattern’s proposed solution.

They define a force as “[...] any aspect of the problem that

should be considered when solving it.” [8]. Similarly, when

considering architecture decisions, a force is any aspect of

an architectural problem arising in the system or its envi-

ronment (operational, development, business, organizational,

political, economic, legal, regulatory, ecological, social, etc.),

to be considered when choosing among the available decision

alternatives.

Forces arise from many sources; most often from require-

ments, but also from constraints, architecture principles and

other “intentions” imposed upon the system; including per-

sonal preferences or experience of the architect(s) and the

development team; and business goals such as quick-time-to-

market, low price, or strategic orientations towards specific

technologies (see [9] for an empirical study on influence

factors on software architecture). Before making decisions, the

architect assembles all forces relevant in the context of the

system to be developed. It can be a good practice to maintain

a list of typical domain-specific forces from different projects

to make sure that not important forces are forgotten.

Different forces may be orthogonal to one another, they

may support, antagonize or contradict each other. Therefore,

an architect must balance forces to make the best possible

decisions. Figure 1 shows an extract from a decision forces

view, which was created as part of a pilot study conducted

to validate the design of the case studies reported below. In

the pilot study, the decision viewpoints from the previously

mentioned framework [3] and the decision forces viewpoint

were used to document architecture decisions made in a

non-academic distributed open source online banking and

accounting system for small and medium-sized companies.

The left part of the table shows the forces that were

considered when choosing among the decision alternatives

listed across the top of the table. Each force is classified by

one or more concerns (please refer to Section III-B for an

explanation of the relationship between forces and concerns).

The decision alternatives can be grouped into decision topics

(e.g. view technology, or data storage in Figure 1), if they were

taken into consideration as alternatives to solve a particular

problem. Within a decision topic, there can only be one

decision with a state equal to or higher than decided (please

refer to [3] for a description of all decision states). The

comment box in Figure 1 contains an example of a textual

description of a force-decision combination. The pluses and

minuses indicate a positive or negative impact of a force on a

decision alternative; an empty field means that a force is not

applicable or neutral; a question mark expresses uncertainty

(please refer to Section III-A for a more detailed description of

102

����

����
�
��	 ��� ��� �������
�� ��� �����

����

�� �� � �� � � � �

�� � � �

� �� � � ��

�! �� � � � � � �

�" �� � � � � � 	

��# � 	 � 	 	

�� � �� ��

�$# �� � �

�$% ��&&'��(�����
���
)������� �� �� � � � �

�$ ���)
*'++��� � 	 � �

�$, � � � �� ��

��

��-� ��

��-$ �

��-#

��-% � ��

��-� �

�$

�$-� � ��

�$-$ �� � �

�$-# �� � �

�% � � � � �

�� �

�, �� � �� �� �� � 	

��
����������� ������������ ������
���

.��(����/ .��*(�����/ .��*(�����/ .��(����/ .��*(�����/ .��*(�����/ .��(����/

��*�	�����

��
��
��
�
�
��
��
�
��
�
��
�
�

�������������������������������������

��*(��+���� ���(���0*1

2�	-
��*+��*�
��&�
.3
4-�* 5�&�
6�������

)���	����
&'��-
+��&���
+�������* �7�����6�����

�����6�����
�8
����
*����	� �����6�����

2�����6�����
�8
8'��
*����(�
0""-"91 �����6�����

�'++���
	��
��	
��
�8
'*��* �(���6�����

��('����
0+��*����
����
+����(����1 ��('����

������
+���8��&
����+�����(� �����6�����

:+���6�����
�8
'*��
�����8�(� ;*�6�����

<��
��=
(�&&-

���=��	
+����(��*

<�
��(��(�
(�*�* ������+&���
(�*�*

 �����������

)���'*�
�7+�����(� ������+&���
��&�

�
��	
0����
	���1 ������+&���
��&�

���
0��(���1 ������+&���
��&�

��2
0	���1 ������+&���
��&�

�����
0����
	���1 ������+&���
��&�

���
0����
	���1 ������+&���
��&�

������	�(
=��
���	�
������+&��� ��&+���������**

�����
��*�	��* ��&+���������**

)&+����
����*(��+�
=��� ��&+���������**

�����
�>'��� ��&+���������**

���'7
*�����
������6�� ������+&���
(�*�*

<��
6'*���**
(����(����� �'*���**
(����(�����

��*�'�(�
'*�	�
��
����� ���'�(�
'����?�����

<�
��*�'�(�*
������-

2��
(��('������*
���

+��8��&��
��
(�����

*���-

Figure 1. Excerpt from a decision forces view (see III-A for conventions used here)

the ratings). The architect evaluates each architectural decision

alternative in the context of the forces. As a result of the

evaluation, a force can have a positive, negative, currently

unknown, or neutral impact on the architect with respect to

a decision; it either attracts the decision maker towards a

specific decision alternative, or it repels the decision maker

from an alternative, or it has no effect. Figure 2 illustrates the

application of forces on an architect when choosing between

two database management systems. On the one hand, the

development team has a lot of experience using MySQL; this

force attracts the architect towards choosing MySQL. On the

other hand, the company wants to develop strategic knowledge

with PostgreSQL, which is also more reliable than MySQL

and turns out to scale better. In this particular case, after

balancing these forces, the architect would probably choose

PostgreSQL, provided that no other decision alternatives were

taken into consideration. In a more general case, an architect

would need to decide between more than two options.

A. Forces Viewpoint Specification

Table I lists the decision-related concerns1 framed by the

decision forces viewpoint. These decision-related concerns are

a subset of a larger set of concerns identified in our previous

work [3]. The codes in Table I were copied from [3] for

consistency.

Views of the decision forces viewpoint are dedicated to

supporting decision–force traceability. They can be used by

stakeholders interested in decision rationale, decisions relevant

for specific stakeholder concerns, addressed requirements,

conflicting forces and how these all relate to each other. The

main stakeholders for this viewpoint are architects, but also

reviewers and other stakeholders who need to comprehend

the choices made in the architecture. Table II shows the

stakeholders along with their main decision-related concerns

with respect to the forces viewpoint. Similarly to the decision-

1The term decision-related concern is used to refer to concerns pertaining to
decision documentation (as opposed to any other types of stakeholder concerns
which are simply termed concerns).

Figure 2. Application of forces on an architect

103

Figure 3. Metamodel of decision forces viewpoint

related concerns, the stakeholders were identified in our pre-

vious work.

Table I
CONCERNS OF THE DECISION FORCES VIEWPOINT

Code Concern
C3 What is the rationale for decision D?
C4 What concerns Ci does decision D pertain to?
C5 What forces Fj impact/influence decision D?
C6 What decisions Dk are influenced by force F ?
C7 What forces Fl have conflicting influences on decision D?
C23 What decisions Dp or decision sub-graphs SGq can be

reused in other projects?

Table II
TYPICAL STAKEHOLDERS OF THE DECISION FORCES VIEWPOINT AND

THEIR CONCERNS

Stakeholder Concerns
Architect C3, C4, C5, C6, C7
Reviewer C3, C4, C5, C6, C7
Requirements Engineer C4, C6, C7
New project member C3
Domain expert C23

The decision forces viewpoint consists of a single model

kind. Figure 3 depicts its metamodel, which presents the

conceptual elements for architecture models that adhere to

it. This model is part of a shared metamodel, which is used

by all viewpoints of the decision documentation framework.

Together with well-defined correspondence rules, the shared

metamodel ensures consistency among the views of different

viewpoints.

The elements in Figure 3 with a gray background map

to the corresponding elements in Figures 2 and 4 of

ISO/IEC/IEEE 42010. In the following, each of the elements

used in Figure 3 is briefly described.

An architecture decision pertains to one or more concerns.

Forces views show only the current state of each decision

(e.g. decided, or discarded [3]). While decisions can generally

have different types of relationships with each other, the forces

viewpoint only regards the is alternative for-relationship to

group multiple decision alternatives into a decision topic.

According to ISO/IEC/IEEE 42010, “Architecture rationale

captures explanation, justification or reasoning about archi-

tecture decisions that have been made.” [4]. In terms of the

forces viewpoint, the architecture rationale should balance all

relevant forces that influence a decision. Note that architecture

rationale is not described in forces views; it is documented

explicitly in decision detail views, which are part of the

decision framework. In the forces viewpoint’s model kind,

the association between Architecture Rationale and Influence

implies that the rationale description should consider the

relevant forces.

All forces are classified by one or more concerns. A stake-

holder could for instance be concerned about development

cost, while concrete forces classified by this concern could

be “not to use paid 3rd-party licenses”, or to “use available

hardware where possible”. The force not to use 3rd-party

licenses could, besides the development cost concern, be

classified by a legal concern (e.g how the software can be

distributed).

Apart from a textual qualification, the influences relationship

between decision force and architecture decision can take one

of the following values, estimated by the architect(s) of the

system:

++: A force strongly supports a specific decision alter-

native to be chosen. An example from Figure 1 is

the operability force, which strongly advocates the

choice of Swing/Java, because Swing can be used to

develop rich graphical user interfaces.

+: A force moderately supports an alternative.

blank: A force has a neutral influence on a decision alter-

native, or it is not applicable.

-: A force moderately opposes an alternative.

- -: A force strongly opposes an alternative to be chosen.

For instance, if the programming team has no experi-

ence in functional programming, then this would be

a strong argument against choosing Lisp or Haskell

as a programming language.

X: A decision alternative is prevented by a force. For

instance, a force could be not to use libraries dis-

tributed under an open source license. Such a force

would for instance prevent the use of Apache Lucene

as a search library. Nevertheless, it can make sense

to document such a decision alternative, because the

forces view could be used to negotiate constraints

or requirements with the customer, if its advantages

clearly outweigh the opposing forces.

?: It is currently unclear how the decision alternative is

impacted by a force. This rating should be temporary,

indicating that prototyping, or more research has to

be done to understand the impact better.

For space limitations, constraints and cross-viewpoint cor-

respondence rules relevant to this viewpoint were omitted in

this article.

104

B. Stakeholder concerns versus decision forces

In the context of ISO/IEC/IEEE 42010, the term concern
was chosen to include any interest that stakeholders consider

fundamental to the architecture of the system (including

the process of creating the architecture): “Concerns arise

throughout the life cycle from system needs and requirements,

from design choices and from implementation and operating

considerations.” [4]. The standard introduces stakeholders’

concerns as a means to drive the selection of architecture

viewpoints, i.e. different stakeholders for the architecture

description have different needs in terms of different kinds of

information. Therefore, concerns result in selecting appropri-

ate representations of the architecture. Forces, in contrast, do

not drive representational choices but architecture decisions.

The concept of a force is related to the concept of a concern,

in that all forces are classified by concerns (see Figure 3). If

a force could not be classified by at least one concern, this

means that it would not represent any interest of the relevant

stakeholders.

IV. THREE CASE STUDIES

To validate the usage of the decision forces viewpoint in

software projects, we conducted a multiple-case study with

senior students working on non-academic software projects.

A case study was preferable over surveys or experiments,

because the phenomenon (i.e. the influence of the forces view

documentation) had to be studied over a long period of time,

thus limiting the possibility for strict control of independent

variables [10]. Additionally, a multiple-case design is regarded

as more robust than single-case studies, because conclusions

from one case can be compared to other cases [11], which

increases external validity.

A. Study goal and research questions

Following Robson’s classification scheme [12], this

multiple-case study is exploratory in nature. The goal is to

explore the support provided by the decision forces viewpoint

to software architecture activities and the coverage of decision-

related concerns in software projects. In particular, the study

aims at answering the following two research questions:

RQ1: How does the forces viewpoint support the decision

making process?

RQ2: Which of the decision-related concerns mentioned in

Table I does the forces viewpoint support?

B. Study design and execution

1) Case descriptions: The study was conducted in the

context of two lecturing modules in the software engineering

study program at the Fontys University of Applied Sciences

in Venlo, the Netherlands. In total, we observed three student

groups working on different projects. Two of the projects were

conducted as part of a lecturing module, in which student

groups work on tasks for external, industrial customers2. The

third project was done as part of a lecturing module on the Java

2The customers have asked us to stay anonymous.

enterprise edition (JEE). In this module, the students were free

to make up their own software project, as long as it involved

at least one technology from the JEE specification set. In all

cases, the students worked on their own responsibility without

lecturers intervening in their decision making process. The

decision documentation was no integral part of the modules

and was not graded. One of the authors was involved in the

third case as a lecturer, while none of the authors was involved

in the former two cases. All projects were observed over a

period of seven weeks. In the following, the three projects are

briefly described:

PrjA: This project is a further development of a legacy doc-

umentation system used to generate different types of

documents based on templates and dynamically allo-

cated data. The software project was commissioned

by a medium-sized German software company. A

prominent user of the system is the Bavarian Depart-

ment of Justice. The primary task of the project group

was an architectural re-design to a service oriented

architecture, including the migration of the existing

functionality to services and the choice and usage of

an appropriate enterprise service bus technology.

PrjB: This software was ordered by a Dutch company

that acts as a broker between restaurant owners and

cooking personnel, specialized on catering, cooking

workshops, and interim executive chefs. The student

group had to develop a web application for person-

nel services in the gastronomy business, allowing

freelancing cooks to register and apply for jobs.

Job offers can be posted by restaurant owners, for

instance. The software had to be developed from

scratch.

PrjC: The third project was conducted as part of a lecturing

module on JEE. The students in this group started

an open source project called /notes (pronounced

Slashnotes) for managing, sharing and distributing

notes. The software offers three different clients that

can be used to access notes: a web application based

on JQuery, a Java desktop application (using Swing),

and a mobile client for Google’s Android operating

system. All architecture decisions had to be made

by the students. A short video showing the main

features of the application can be found on YouTube

(http://youtu.be/wW1Lgq2gZvg).

2) Subjects: The subjects of the study were students from

the last year of a four-year software engineering program of

study. All of the students had already gained some industrial

experience from a five-month internship; some of them had

additionally pursued part-time jobs in the software engineering

industry. During the course of their study, the students had fol-

lowed different courses on programming, object-oriented anal-

ysis and design, and software engineering process models (e.g.

RUP, Scrum, Iterative waterfall). To gather their experience

regarding programming, design, and software architecture; as

well as the time they had already spent in the industry, we

105

Table III
PREVIOUS EXPERIENCE OF THE SUBJECTS

PrjA PrjB PrjC
No. stud. 6 5 4
Prog. exp. 75,33 (48,89) 49,2 (13,26) 59,5 (21,56)
Des. exp. 50,33 (28,63) 32,2 (3,03) 33,5 (8,54)
Arch. exp. 38,67 (4,84) 28,6 (9,48) 11,25 (7,97)
Ind. exp. 25,17 (36,21) 7 (2,83) 7,25 (6,18)

asked all participants to fill in a web-based questionnaire prior

to the study. Table III shows the number of students in each

group (No. stud.), as well as the average number of months of

experience that the students had as programmers (Prog. exp.),

as software designers (Des. exp.), with software architecture

(Arch. exp); and as software engineers in the industry, or

as payed freelancers. The numbers in parentheses show the

standard deviations. With the exception of one outlier in PrjA

regarding programming, design, and industrial experience, the

students’ previous experiences was comparable between the

groups, which renders them equivalent data sources. The

fact that the students were in the last semester before the

graduation project, and had some first experiences in the IT

industry, makes them suitable subjects for the population of

inexperienced software engineers at the beginning of their

professional careers.

Carver et al. provide a checklist for conducting empirical

studies with students [13]. This checklist was used to ensure

that the study had a pedagogical value for the participating

students and that the results are generalizable to a larger pop-

ulation (in this case the population of inexperienced software

engineers). In the following, we list all items of this checklist

together with a brief explanation on how the checklist item

was considered:

1) Ensure adequate integration of the study into the
course topics – In both lecturing modules, the students

had to make architecture decisions autonomously. The

decision forces view supports the decision making pro-

cess and provides decision-force traceability. Thus, it

integrated well into the course topics.

2) Integrate the study timeline with the course schedule
– The timeline for the study was explicitly planned

according to the start of the lecturing modules.

3) Reuse artifacts and tools where appropriate – The

students used a spreadsheet application for creating the

decision forces view. No special tool was introduced for

the purpose of decision documentation.

4) Write up a protocol and have it reviewed – A study

protocol was written before the study and reviewed by

the authors in multiple iterations.

5) Obtain subjects’ permission for their participation
in the study – Prior to the two courses, the students

were asked if they wanted to participate in the study.

They were ensured that no personal data would be made

available in the study report. All students expressed

their interest in the study. They were also given the

opportunity to withdraw from the study by sending an

email to the course lecturers.

6) Set subject expectations – The students were informed

about the effort, we estimated for the decision documen-

tation. Apart from that, we told them that we would give

them feedback about how to improve their individual

architecting processes after the study.

7) Document information about the experimental con-
text in detail – The context of the study is documented

in this article.

8) Implement policies for controlling/monitoring the
experimental variables – The relevant previous expe-

rience of the subjects, as well as the descriptions of the

projects they were involved in, are reported in this paper.

The data collection methods and data sources used to

monitor these variables are described in Section IV-B3.

9) Plan follow-up activities – At the end of the semester,

the students were informed about the study results. Each

project group also received individual feedback on their

architecting process.

10) Build or update a lab package All collected data was

stored in a digital study database (as proposed in [11]).

The database was used as a basis for the analysis.

3) Data collection: The data collected in this case study is

qualitative in nature. We applied triangulation of data-sources,

which is a well-accepted method to increase the precision of

studies that mainly collect qualitative data [10], [11], [14].

The different data sources that were triangulated, correspond

to different data collection methods, which are as follows:

Work artifacts: In the two lecturing modules, from which

we recruited our project groups, the students were

obliged to store all project related files in Subversion

repositories. The researchers were given read access

to these repositories, enabling them to track the

progress and the iterative refinement of the archi-

tectural design.

Focus groups: At the end of the seven weeks, we con-

ducted focus groups with each of the projects. Focus

groups are group interviews with a small number of

participants, in which a moderator asks questions to

concentrate the discussion on a predefined topic. In

contrast to individual interviews, focus groups allow

group members to build up on each others’ answers

leading to more profound information [15]. All focus

groups were audio recorded and transcribed.

Participant observation: During the seven weeks, the three

groups were regularly (at least weekly) visited during

their working sessions. The researchers took written

notes (i.e. field notes) about their observations, which

were afterwards scanned and stored in the study

database.

4) Pilot study: To fine-tune the design of the study, in

particular the data collection procedures and the research

questions, we performed a pilot study. In this pilot study,

we used the decision framework, and the forces viewpoint in

106

particular, to document the architecture decisions of a system

for online banking and accounting. One of the authors was

involved in the project as a developer. Figure 1 shows an

excerpt from the forces view created in this pilot.

The pilot study was particularly helpful for understanding

how the forces viewpoint can support the decision making

process. In addition, the results were used to develop the

question guide, which was employed during the focus groups

to ensure that no important topics of interest were forgotten.

C. Analysis procedure and results

As the data in our study database was qualitative to a large

extend, we chose to apply a grounded theory approach [16] to

analyze the data. While being used mainly in social sciences,

grounded theory has recently also gained more attention in

software engineering related research (see for instance [17],

[18]).
1) Analysis procedure: Grounded theory is inherently ex-

plorative in nature, as it promotes the analysis of data without

predetermined ideas about potential findings. Concepts emerge

slowly by constantly comparing indicators found in the data

to previously identified indicators. That way, an idea about a

finding (usually referred to as a theory) is either supported by

additional evidence, or it has to be rejected, if no additional

indicators can be found to carry it. In the following, the steps

we followed during the data analysis are briefly described.

Note that steps two to four are performed iteratively.

1) Convert data to PDF: The gathered data was exclu-

sively stored digitally. As a preparation for the data

analysis, we converted all files in the study database to

the PDF format to allow for a uniform coding procedure.

2) Coding: All PDFs were intensively studied. Indicators

for concepts related to decision views (in particular the

forces view) were coded (i.e. labelled) as brief state-

ments using PDF annotations. Please refer to Adolph

et al. [17] for an extensive explanation of the terms

indicator, code, concept, and category, which are central

concepts in grounded theory.

3) Identify concepts: During the coding procedure, con-

cepts emerge, which represent candidate patterns of

behavior, suggested by a set of indicators. The concepts

were registered and related to the codes supporting it.

The result after some iterations of analysis, was a set of

concepts describing how the three student groups used

and perceived the forces viewpoint in their projects.

4) Classify concepts into categories: Finally, in the last

step of the analysis, the concepts from the three groups

were compared to identify common categories of con-

cepts. A category is a concept on a higher level of

abstraction. As stated above, findings that were concor-

dantly made in more than one project group are more

reliable.

2) Analysis and interpretation: Table IV summarizes the

results of the qualitative analysis. The table maps the cate-

gories, identified in step 4 of the analysis procedure, to the

project groups, in which they were observed. Additionally,

the table shows decision-related concerns that are related to

some of the categories, as well as research questions (column

Res. Qu.), to which the categories contribute. In the following,

the results are interpreted in the context of the two research

questions. The interpretation focuses on categories that were

recognized in at least two of the projects; only regarding

suggestions for improvement, we discuss categories assigned

to single groups only.

RQ1: How does the forces viewpoint support the decision
making process? As Table IV shows, the data collected from

all three groups indicated that the forces views caused the

students to take the decision making process more seriously

than they would have done otherwise (Cat1). The fact that

decisions and forces had to be documented explicitly caused

the students to think more concretely about available decision

alternatives (Cat5), and the forces that influence the choice

between these alternatives. The students noticed that the view

prevented them from making decisions ad-hoc (Cat3, Cat19).

A comment in a focus group was “If you don’t have the view,

then you might also see alternatives, but if I have experience

in a solution then I will choose this one. But with the (forces)

view, you are forced to think about which one is really better.”

It is notable that all groups mentioned that the forces views

triggered them to consider quality attribute requirements in the

first place (Cat2). They had not thought of this in projects be-

fore (during their studies or in side jobs). Among all collected

work artifacts, the forces views were the only documents in

which quality attributes were mentioned. Considering quality

attributes in architectural design, however, is an important

best-practice that should be adopted by inexperienced software

engineers.

In general, the forces viewpoint was very well received by

the students. They found it especially helpful to maintain an

overview over decisions made and the factors that influence

the decisions (Cat18). The majority of members in all groups

explicitly stated that they will reuse the forces viewpoint in fu-

ture projects (Cat4)3. They acknowledged that it is a good way

of documenting architecture decisions (Cat6). This finding is

particularly important, because our experience from multiple

studies with students shows that they cannot be convinced

to document their decisions using decision templates (e.g.

from [2]). They usually perceive decision documentation as

a tedious task that does not have an immediate benefit. The

forces viewpoint, in contrast, is a documentation approach that

they quickly accepted; presumably because of its relative light-

weightiness and its immediate support for the decision making

process.

Although the students were predominantly positive about

the forces viewpoint, they also made suggestions for improve-

ment. ProjectC was concerned about the fact that the forces

viewpoint does not provide means to specify different weights

for forces (Cat14). In their project, some forces were clearly

3At the time this paper was written, the students were working on their final
bachelor projects in external companies. We repeatedly received questions and
suggestions about the forces viewpoint, which indicates that at least some
students indeed keep using decision views.

107

Table IV
RESULT OF THE QUALITATIVE ANALYSIS

Code Category PrjA PrjB PrjC Concerns Res. Qu.
Cat1 Required students to think more carefully about decisions. X X X RQ1
Cat2 Triggered students to consider quality attribute requirements. X X X RQ1
Cat3 Prevents ad-hoc decisions. X X X RQ1
Cat4 Forces viewpoint will be used in other projects. X X X RQ1
Cat5 Triggered students to identify more alternatives. X X RQ1
Cat6 Good way to document decisions. X X RQ1
Cat7 Creating the forces view took a lot of time. X RQ1
Cat8 Prevents inefficient discussions about decisions. X RQ1
Cat9 Created with reasonable effort. X RQ1
Cat10 Saved time in the end. X RQ1
Cat11 Support for rational decisions. X RQ1
Cat12 Forces view complements relationship view. X RQ1
Cat13 Useful for architects, designers, programmers, and new project members. X RQ1
Cat14 Support for weighing forces is missing. X RQ1
Cat15 Identifying all forces is a matter of experience. X RQ1
Cat16 Forces view and relationship view are simultaneously refined. X RQ1
Cat17 Proper tool support needed. X RQ1
Cat18 Maintain overview over architectural decisions, concerns, and forces. X X X C4,C5,C6 RQ1,RQ2
Cat19 Helpful to systematically compare decision alternatives in the context of

forces.
X X X C5,C6 RQ1,RQ2

Cat20 Help for estimating requirements coverage. X X C6 RQ1,RQ2
Cat21 Support for systematic trade-offs between forces. X C7 RQ1,RQ2
Cat22 Supports sharing architecture rationale. X X X C3, C23 RQ2

more important than other forces causing them to select an

architecture decision alternative that had a lower rating (i.e.

sums of pluses and minuses) than the other alternatives. Al-

though we had considered this aspect during the design of the

forces viewpoint, we chose not to include it in the viewpoint

specification to keep it simple. Systematically weighing forces

would have introduced additional complexity, which could

have deterred students from using the view properly. However,

the forces viewpoint can easily be customized by stakeholders

in order to introduce such weights in their projects. Apart

from this, it became evident that identifying all relevant forces

is a matter of experience (Cat15). Therefore, especially for

domain-specific forces, it can be helpful to collect typical

forces from different projects that can be used as a checklist

to ensure that no important forces are forgotten. Tool support

would also be appreciated, especially to ensure consistency

and to save work when creating the forces view in addition to

other views from the framework (Cat17).

RQ2: Which decision-related concerns does the forces
viewpoint support? To find out for which decision-related

concerns the students used the forces views, we analyzed

the concepts and categories and compared them to the list

of concerns in Table I. The results are shown in Table IV

(categories 18 to 22). Because the categories are conceptually

more abstract than single concerns, sometimes multiple con-

cerns are mapped to a single category. Note that the students

were not knowledgable about the concerns we had assigned

to the forces viewpoint in the specification. This would have

introduced a threat to the validity of our findings.

The concepts classified under category Cat18 have shown

that all three groups used the forces views to maintain an

overview over architectural decisions, concerns, and forces.

The students described that one column in the forces view

(see Figure 1) shows which concerns (Cat18, concern C4), and

which forces (Cat18, concern C5) are related to a decision.

They also understood that a row in the view shows decisions

influenced by a specific force (Cat18, concern C6). This

information was actively used by the students to make the

choice between multiple alternatives more systematic (Cat19,

concerns C5, C6).

All three groups saw value in the forces viewpoint with

respect to sharing architecture rationale (Cat22, concern C3).

In particular, they mentioned that usually individual members

of the groups were more knowledgeable about specific ar-

chitectural decision alternatives and their relation to forces

than others. The forces views helped them to spread this

knowledge better among the group members. Using their own

words, the student groups stated that studying the forces view

helped everybody to understand the why behind architecture

decisions, including the decisions primarily made by others.

Category Cat22 was also assigned to concern C23, because

the students saw the potential of the forces views to facilitate

the reusability of decisions in other projects: by providing the

rationale in terms of decisions addressing specific forces, the

decisions can be reused in cases where similar rationale would

make sense.

Two groups used the forces views to estimate the coverage

of some important requirements (Cat20). During the analysis

of the work artifacts, we could see that all groups had used

requirements as forces; only two of the groups, however,

had also actively used the forces view to check in how

far the decisions made were suitable to actually satisfy the

requirements. They understood that a row in the view shows

all decisions that need to be regarded when estimating the

108

coverage of a particular requirement (i.e. a force in the forces

view). For the same reasons, Cat20 confirms concern C6,

which is about identifying all decisions that were influenced

by a particular force.

Concern C7 (Which forces have conflicting influences on

a decision?) was only explicitly approved by one project.

Conflicting influences have to be regarded when making trade-

offs (Cat21). In forces views, conflicting impacts are indicated

by a decision that has positive rating for one force and negative

ratings for another force. Although this situation was observed

in the forces views of all three groups, only one of the

groups explicitly acknowledged the usefulness of forces views

for making trade-offs. We conjecture that the other groups

did not mention trade-offs, because they had not explicitly

discussed such situations. Only in PrjC, we observed that the

group actively and fully-aware discussed conflicting impacts

and ways to compensate resulting issues. This corresponds to

the team’s earlier discussed statement that they were missing

weights for forces (Cat14). Particularly when making trade-

offs, different weights of forces should be considered.

D. Threats to validity

In the following, we present potential threats to the validity

of our findings. In particular, we cover typical validity threats

in software engineering studies, as identified in [11] and [19].

1) Construct Validity: Construct validity is concerned with

the operational measures taken to analyze the phenomenon

under study. In this case, we used multiple sources of evidence

(i.e. work artifacts, field observation, and focus groups) to

study the use of the forces viewpoint in software projects.

Additionally, the use of a grounded theory approach ensures

that conclusions are rooted in the collected data and that no

important concepts are forgotten.

2) Internal Validity: Internal validity mainly has to be

considered in explanatory case studies [11], in which a cause-

effect relationship is going to be established. In exploratory

case studies, internal validity basically concerns making infer-

ences. In this case, we tried to address this potential threat by

involving different sources of data, including direct participant

observation and analysis of work artifacts. Logical deductions

are generally based on multiple sources of evidence and

aligned among at least two of the projects under study (we

did not make deductions from data coming from only one

project).

3) External Validity: External validity concerns the gen-

eralizability of the study’s findings to a larger population.

Because statistically representative samples can typically not

be achieved in cases studies, the emphasis is usually put on

analytical generalization, thus an explanation why the findings

are representative for other cases with common characteristics

[10]. Yin points out that external validity can be improved

by using replicated study-designs [11]. In this study report,

we present results that are based on findings made in three

different cases using identical study designs. This reduces

the influence of the concrete cases and of the individual

students in the different project groups. Therefore, we assume

that our findings are relevant at least for the population of

inexperienced software engineers at the beginning of their

professional careers. Although we did not find any indicators

raising legitimate doubts about the usefulness of the decision

forces viewpoint for experienced software architects as well,

additional industrial studies must be conducted to generalize

the study results to this larger population.

4) Reliability: The reliability of a study is concerned with

the minimization of errors and biases that stem from the

researchers who conducted the study. In this case, the moder-

ator of the focus groups could have influenced the students

towards giving specific answers. This threat was mitigated

by asking open questions like “How did the decision forces

view influence your decision making process?”. As follow-

up questions, the moderator asked the students to explain

their answers, or to go more into detail. To mitigate the risk

of suggestive questions and to make sure that all important

topics would be covered, we prepared a question guide [20]

in advance, which was used by the moderator during the focus

groups.

An additional potential threat to reliability could result from

students not staying true to the facts during the focus groups.

To mitigate this risk, we used data-source triangulation [21],

which allowed us to verify concepts using different types of

data. Additionally, as stated above, we prioritize results that

were concordantly found in at least two of the three case

studies.

V. RELATED WORK

The work presented in this paper is related to architecture

decision documentation in general, and architecture decision

views in particular. In our recent publication, we extensively

discussed related work in these two fields [3]. Therefore, in

the remainder of this section, we focus on related work with

respect to traceability between requirements (problems) and

design (solutions).

The decision forces viewpoint acknowledges the importance

of relating architecture decisions to the forces driving those

decisions. As such, the forces viewpoint is connected to

the research area of relating architecture and rationale. In

their recent book, Avgeriou et al. compiled 15 articles that

relate architecture and requirements [22], taking among others

traceability between architecture design, decision rational and

requirements into account. Tang et al. in the same publication,

provide a traceability metamodel for bridging the gap between

elements from the problem space (stakeholders, requirements,

and issues) and elements from the solution space (architectural

design, structure, components) using architecture decisions

and rationale as intermediaries. Other authors had proposed to

use reference models to support different types of requirements

traceability before (e.g. [23], [24]).

A slightly different approach to software architecture–

requirements traceability has recently been introduced by

Malavolta et al. [25]. Originating from the model-driven

architecture field, they suggest to use weaving models to

relate requirements models, architecture decision models, and

109

different types of architecture descriptions. In contrast to using

one shared metamodel, weaving models are non-invasive and

provide greater flexibility.

Tang et al. provide an architecture model for design trace-

ability and reasoning [26]. The model connects architecture

description elements (as defined in IEEE Std 1471-2000 [7])

to architecture decisions and architecture rationale, as first

class entities. These authors also implicitly acknowledge the

existence of decision forces, by introducing a concept they

call motivational reason. A motivational reason can be among

others a requirement, a goal, an assumption, or a constraint.

Despite this existing work on architecture rationale-design

traceability, to the best of our knowledge, no approach ex-

ists that systematically integrates this traceability in a soft-

ware architecture description following the conventions of

ISO/IEC/IEEE 42010. Additionally, and more importantly,

very few authors have recognized the importance of treating

the full scope of decision forces extending across the context

of the system and the environment in which it is developed,

as first-class entities in an architecture description. We argue

that the concept of decision forces, as introduced here, is a

valuable contribution to the field.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced the decision forces viewpoint

as an extension to our framework for documenting architecture

decisions. The viewpoint was validated in a multiple-case

study, which has shown that the forces viewpoint is very well

received, while satisfying its related concerns. Additionally,

the forces viewpoint has demonstrated its ability to support

inexperienced software engineers during the decision making

process, by providing a structure that triggers them to consider

multiple architectural decision alternatives and systematically

compare them in the context of all important forces.

We are currently observing the use of the forces viewpoint

and other decision viewpoints from our framework in an

industrial study, in which we analyze the suitability of decision

views for problem and design space documentation. Apart

from that, we have used it as part of a decision-based archi-

tecture evaluation method, which we are currently developing.

Finally, as suggested by many users of our decision view-

points, we continue the development of a tool suite, which

efficiently supports architects in documenting views corre-

sponding to our viewpoints.

ACKNOWLEDGEMENTS

We would like to thank all participating students from

the software factories and the Java enterprise edition course

2011/2012. Two of the cases reported on in this paper are part

of a larger study designed and conducted together with Antony

Tang.

We would also like to thank Veli-Pekka Eloranta and Kai

Koskimies, with whom we initially discussed the concept of

decision forces in the context of decision-based architecture

evaluation.

REFERENCES

[1] P. Kruchten, “An ontology of architectural design decisions in software
intensive systems,” in Proceedings of the 2nd Groningen Workshop on
Software Variability, 2004, pp. 54–61.

[2] J. Tyree and A. Akerman, “Architecture Decisions: Demystifying Archi-
tecture,” IEEE Software, vol. 22, no. 2, pp. 19–27, 2005.

[3] U. van Heesch, P. Avgeriou, and R. Hilliard, “A documentation frame-
work for architecture decisions,” Journal of Systems and Software,
vol. 85, no. 4, pp. 795 – 820, 2012.

[4] ISO/IEC/IEEE 42010, Systems and software engineering — Architecture
description, ISO, December 2011.

[5] D. Perry and A. Wolf, “Foundations for the study of software architec-
ture,” ACM SIGSOFT Software Engineering Notes, vol. 17, no. 4, pp.
40–52, 1992.

[6] P. Kruchten, “The 4+ 1 View Model of Architecture,” IEEE Software,
vol. 12, no. 6, pp. 42–50, 1995.

[7] IEEE Std 1471–2000, IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems, IEEE, October 2000.

[8] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-oriented software architecture: a system of patterns. John Wiley
& Sons, Inc. New York, NY, USA, 1996.

[9] G. Mustapic, A. Wall, C. Norstrom, I. Crnkovic, K. Sandstrom,
J. Froberg, and J. Andersson, “Real world influences on software
architecture-interviews with industrial system experts,” in Fourth Work-
ing IEEE/IFIP Conference on Software Architecture, 2004. WICSA 2004.
IEEE, 2004, pp. 101–111.

[10] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[11] R. K. Yin, Case Study Research: Design and Methods, Applied Social
Research Methods Series, Vol 5, 5th ed. Sage Inc., 2009.

[12] C. Robson, Real world research. Wiley, 2011.
[13] J. Carver, L. Jaccheri, S. Morasca, and F. Shull, “A checklist for

integrating student empirical studies with research and teaching goals,”
Empirical Software Engineering, vol. 15, no. 1, pp. 35–59, 2010.

[14] R. Stake, The art of case study research. Sage Publications, Inc, 1995.
[15] J. Kontio, J. Bragge, and L. Lehtola, “The focus group method as an

empirical tool in software engineering,” Guide to advanced empirical
software engineering, pp. 93–116, 2008.

[16] B. Glaser and A. Strauss, The Discovery of Grounded Theory: Strategies
for Qualitative Research. Aldine Publishing Company, 1967.

[17] S. Adolph, W. Hall, and P. Kruchten, “Using grounded theory to
study the experience of software development,” Empirical Software
Engineering, vol. 16, no. 4, pp. 487–513, 2011.

[18] C. Urquhart, H. Lehmann, and M. Myers, “Putting the theory back into
grounded theory: guidelines for grounded theory studies in information
systems,” Information systems journal, vol. 20, no. 4, pp. 357–381, 2010.

[19] C. Wohlin, M. Hoest, P. Runeson, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering: an introduction.
Kluwer Academic Pub, 2000.

[20] N. Mack, C. Woodsong, K. MacQueen, G. Guest, and E. Namey,
Qualitative research methods: A data collector’s field guide. FLI, 2005.

[21] T. Lethbridge, S. Sim, and J. Singer, “Studying Software Engineers: Data
Collection Techniques for Software Field Studies,” Empirical Software
Engineering, vol. 10, no. 3, pp. 311–341, 2005.

[22] P. Avgeriou, J. Grundy, J. Hall, P. Lago, and I. Mistrik, Relating Soft-
ware Requirements and Architectures. Springer Publishing Company,
Incorporated, 2011.

[23] O. Gotel and C. Finkelstein, “An analysis of the requirements traceability
problem,” in Proceedings of the First International Conference on
Requirements Engineering. IEEE, 1994, pp. 94–101.

[24] B. Ramesh and M. Jarke, “Toward reference models for requirements
traceability,” IEEE Transactions on Software Engineering, vol. 27, no. 1,
pp. 58–93, 2001.

[25] I. Malavolta, H. Muccini, and V. Smrithi Rekha, “Supporting archi-
tectural design decisions evolution through model driven engineering,”
Software Engineering for Resilient Systems, pp. 63–77, 2011.

[26] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model for
design traceability and reasoning,” Journal of Systems and Software,
vol. 80, no. 6, pp. 918–934, 2007.

110

