
A Variability Viewpoint for Enterprise Software Systems

Matthias Galster
University of Groningen, The Netherlands

mgalster@ieee.org

Paris Avgeriou
University of Groningen, The Netherlands

paris@cs.rug.nl

Abstract—Many of today’s enterprise software systems are
subject to variability. For example, enterprise software systems
often run in different business units of an organization, with
each unit having its own detailed requirements. Systematic
handling of variability allows a software system to be adjusted
for different contexts, by planning for adaptation during
architecture design. As variability is system-wide, it is reflected
in the software architecture. To facilitate the representation
and analysis of variability in the architecture of enterprise
software systems, we propose an architecture viewpoint. To
define a reusable variability viewpoint, we elicited stakeholders
and concerns through exploratory studies. We also show how
the viewpoint was applied for describing variability in a large-
scale e-government system.

Keywords-variability; software architecture; viewpoints

I. INTRODUCTION

Variability is the ability of a software to be adapted for a
specific context [1] to enable multiple deployment scenarios
or versions of a software system. To enable variability, parts
of the architecture are not fully defined during early design,
but later when more details about concrete usage scenarios
are known. During early iterations, architects identify what
parts of a system should be variable (e.g., in terms of
“variation points”) and how to resolve this variability (e.g.,
in terms of “variants” or ranges of variants). Later, these
variants are used to resolve variability.

Many of today’s software systems are built with
variability in mind, e.g., product families, self-adaptive,
customizable single systems, open platforms, or service-
based systems that support dynamic composition of web
services. One prominent category of variability-intensive
software systems are enterprise software systems (ESS). ESS
often run in different business units of an organization with
their specific requirements, or in different countries in which
a company operates with specific constraints on business
processes. Differences in these deployment scenarios affect
business processes as well as functionality of ESS.

Identifying and managing variability of a system early
on, and in particular during architecting, is preferred over
addressing variability later. As variability is pervasive and
affects many stakeholders, architects need proper support for
representing, reasoning about and managing variability.
However, describing variability in ESS is often performed in
a fragmented way where a) each architecture model only
covers few variability concerns and b) dependencies between
models are not taken into consideration. Thus, we propose an
architecture viewpoint [2] for variability to provide a broader

description of variability in the architecture of ESS. The
viewpoint helps construct a view of an ESS comprising
several complementary models that address detailed
variability concerns, rather than treating variability as one
high-level concern within one model. To reduce discrepancy
between architecture practice and research, evidence for the
validity of concerns and model elements exists in the sense
that concerns represent real stakeholder interests derived
from empirical studies. Furthermore, the viewpoint follows
the conventions of ISO / IEC 42010 [2]. In contrast to
enterprise frameworks, e.g., [3], we focus on variability and
its impact on the architecture; thus, our work differs in
stakeholders, concerns and models.

Section II of this paper outlines previous work. In
Section III we discuss how we defined the viewpoint. The
viewpoint itself is introduced in Section IV. A discussion is
presented in Section V before we conclude in Section VI.

II. BACKROUND AND RELATED WORK

Variability has primarily been studied in the software
product line (SPL) domain [4]. For example, variability in
ESS from a product line perspective has been investigated in
[5]. Product line architectures describe variability explicitly
as in terms of “features” and “decisions” and encompass
limited conceptual models, such as feature models, decision
models or component-and-connector models, often in
isolation. However, a holistic view on concerns and models
is currently missing. Most importantly, a product line
assumes the existence of a product line infrastructure and
related processes. This is rarely the case for many
architectures which should support variability.

Recently, architecture viewpoints have gained popularity
to describe software architectures [2]. We show the proposed
ESS variability viewpoint in the context of ISO / IEC 42010
in Fig. 1 (dotted elements were added to indicate that the
definition of the ESS variability viewpoint is driven by tasks
that stakeholders perform and that tasks are supported by the
views created based on the viewpoint).

Figure 1. Concepts in the context of the ESS variability viewpoint.

2012 Joint Working Conference on Software Architecture & 6th European Conference on Software Architecture

978-0-7695-4827-2/12 $26.00 © 2012 IEEE

DOI 10.1109/WICSA-ECSA.212.43

267

A viewpoint frames concerns which are addressed in
views. A viewpoint consists of conventions for constructing
and interpreting a view. A model uses conventions specified
by the model kind governing that model and prescribed by
the viewpoint. Previous works proposed viewpoints for
change or evolution, but do not express variability explicitly.

III. PROCEDURE TO DEFINE VARIABILITY VIEWPOINT

An overview of our procedure to define the ESS
variability viewpoint is shown in Fig 2.

Figure 2. Procedure to develop variability viewpoint.

A. Exploratory Study with Students
In a previous study we identified eleven problems that

occur when performing variability-related tasks during
software architecting [6]. Subjects were software engineering
graduate students with practical experience. As we aim at a
viewpoint that helps software architects perform their tasks,
problems identified in this study can be interpreted as
potential concerns to be framed by a viewpoint. Concerns
identified based on problems are discussed in Section IV.

B. Industrial Case Study: B2B Platform
We conducted an exploratory case study in a large

software organization. The goal was to identify and confirm
stakeholders, concerns and model kinds to define a
variability viewpoint for ESS. Stakeholders, concerns and
model kinds elicited from industry lead to more useful
viewpoints for practitioners. The case in the single case study
[7] was a project for a large customer of the software
organization. The customer did not agree to release any
details that could reveal its identity. The project we studied
was about a web selling platform to sell a broad variety of
physical products in a business-to-business context. We
selected this case because a) to get relevant stakeholders,
concerns and insights into relevant model kinds, we aimed at
a large-scale project, b) the produced software in the project
is used by one customer organization with substantial
variability in its business processes, c) using a “crucial case
selection” strategy [8], we aimed at a representative software
development organization / project. The unit of analysis in
the holistic study design was variability and challenges that
lead to concerns, and related model kinds. The system we
studied is variability-intensive as it needs to support many
variation points for many business units with different
business rules. Furthermore, each business unit has different
backend systems. Finally, there are different roll-outs of the
system (e.g., for each region). For data collection we used

direct contact with representatives of the software
organization. We took notes and copies from whiteboard
discussions. We described the business processes of the B2B
platform, variability, concerns and stakeholders. We
discussed how to address concerns to identify model kinds.
The analysis of results is presented in Section IV.

C. Industrial Case Study: E-government
The goal of this case study was to assess the ESS

variability viewpoint to evaluate its applicability from the
perspective of software architects of a large software-
intensive system. The single case was a software solution in
the context of Dutch local e-government. The software
supports the implementation of the Dutch law that mandates
rules for providing social support to citizens, such as
domestic care (so called WMO law). We selected this case
for similar reasons as in the B2B case study. The unit of
analysis was the ESS variability viewpoint and the variability
view and models created based on this viewpoint. The e-
government system is variability-intensive because even
though the law has been approved by the Dutch national
government and all municipalities must provide the same
service to citizens, the solutions chosen to implement this
law can differ substantially between municipalities.
Differences between municipalities are too big to implement
solutions as one product for all municipalities, yet not too big
to be covered by one generic solution. For data collection we
interviewed stakeholders from municipalities as well as
software vendors and domain experts, and studied
documents related to implementing software systems for the
WMO law. We described the business process of the WMO
law and framed variability concerns according to the
variability viewpoint. Data analysis happened through
content analysis of interview data and process descriptions,
and through constructing the variability view and related
(partially shown in Section IV).

IV. ESS VARIABILITY VIEWPOINT

In the B2B case study we identified the following
stakeholders: architects who describe architecture (SH1),
customers who operate and use a product (SH2), evaluators
who evaluate the architecture (SH3) and domain experts who
identify commonalities and variations in a software product
(SH4). When expressing needs, practitioners think of tasks
they perform [9]. We found the following tasks reflected in
the case study [10] (for each task we state the corresponding
stakeholders): T1: Variability identification (decide what
variability is needed and where; SH2 and SH4). T2:
Variability constraining (ensure that just enough flexibility is
provided in the architecture, rather than limitless flexibility;
SH1, SH2, SH3 and SH4). T3: Variability implementation
(select suitable realization techniques; SH1 and SH3). T4:
Variability management (evolution, maintenance; SH1 and
SH3). Table I shows the concerns of stakeholders framed by
the viewpoint and elicited from the exploratory study from
Section III.A (S1) and from the B2B case study (S2). In
Table II we map concerns to stakeholders, as identified in the
B2B case study. Their relevance was confirmed in the e-
government case study.

268

TABLE I. CONCERNS FRAMED BY ESS VARIABILITY VIEWPOINT

 Source Task
ID Concern S1 S2 T1 T2 T3 T4

C1 Where in the business process
does variability occur? x x x

C2 What types of variability occur
in the business process? x x x x

C3 What variants are available to
resolve a variation point? x x x x x

C4 When would variability in the
business process be resolved? x x x x

C5 Where in the architecture is
variability needed? x x x x

C6
How does a variation point in
the business process map to
variability in the architecture?

 x x x

C7 Is a variant a valid option at a
variation point? x x x

C8 What are relationships between
variation points and variants? x x x x

C9 How do variants and quality
attributes interact? x x x x

TABLE II. RELATION BETWEEN STAKEHOLDERS AND CONCERNS

ID Stakeholder Concern
SH1 Architect C1, C2, C3, C4, C5, C6, C7, C8, C9
SH2 Customer C1, C2, C3, C4
SH3 Evaluator C1, C2, C3, C4, C5, C6, C7, C8, C9
SH4 Domain expert C1, C2, C3, C4

A. Viewpoint Metamodel
The viewpoint metamodel describes conceptual entities

of the viewpoint. Inputs to defining the metamodel were
model elements identified in the B2B case study. To frame
all concerns identified in the previous section, the metamodel
(Fig. 3) includes aspects of a variable business process and
architecture in terms of software implementation artifacts.

Figure 3. ESS variability viewpoint metamodel.

We use process, sub-process and activity to define a
business process. Activity type includes: services (automated
tasks performed by ESS), activities performed by users with
the help of the ESS, and manual activities with no support
from the ESS. To represent software artifacts, the metamodel
utilizes basic software artifacts in terms of components and
connectors because the viewpoint codifies architecture
knowledge independent of a domain or technology. The
metamodel can be “instantiated” (e.g., in the domain of

service-oriented architecture, a component could be a service
and a connector could be a web service request). Variation
points are referenced in software artifacts, i.e., are resolved
by the implementation in software artifacts. A variation point
can be open, i.e., no variants are specified to resolve it, or
can have a (optional or mandatory) variant assigned to it.
We include two interactions between variability elements
(variants and variation points): conflict or neutral.
Furthermore, a variant has a resolution time, which can be
runtime or design time. Variability types include activity
(one activity can be replaced by another), sub-process (one
sub-process is replaced by another), parameter (parameters
used to invoke an activity or sub-process vary), parameter
value (parameter values vary), flow and composition. The
flow type refers to the fact that a business process describes a
sequence of a workflow, and that activities and sub-
processes can alternatively or optionally be used.
Composition means that software components are composed
depending on the variation point to resolve in the
implementation. We include the impact of variability
elements on quality attributes.

B. Viewpoint Model Kinds
The viewpoint supports six model kinds (Table III). All

model kinds emerged from the B2B case study and comply
with the shared viewpoint metamodel.

TABLE III. MODEL KINDS, CONCERNS AND STAKEHOLDERS

Model kind Concern Stakeholder
Business process variability C1, C2, C3 SH2, SH3, SH4
Business process variation point C2, C4, C7, C8 SH3, SH4
Variability distribution C1 SH1, SH3
Variability mapping C1, C5, C6 SH1
Variability interaction C7, C8 SH1, SH3
Variability quality influence C9 SH1, SH3

Business process variability model kind. This model
kind governs models that describe the business level of the
architecture of an ESS in terms of business processes. We
use an annotated version of the Business Process Modeling
Notation (BPMN) as the notation for models of this kind. We
constructed the business process variability model in the e-
government case study by eliciting business processes from
municipalities and interviewing stakeholders. The business
process consists of six sub-processes (“phases” in the WMO
law) and more than 13 variation points.

Figure 4. Partial business process variability model.
Fig. 4 shows the variability in a business process,

including variation points and variants of a sub-process to

269

determine the personal budget of a citizen that requested
social support through the WMO law (“Personal budget
phase”). The start and end points are connected to other sub-
processes of the WMO process. Boxes around variation
points show the scope of the variation point. The variation
point in this model is “Personal budget”. Its type is a “SP-
activity” (sub-process or activity), and variants include “in-
house” (sub-process) and “outsourced” (activity).

Business process variation point model kind. Models
based on this kind describe details about variation points in a
business process. Fig. 5 shows the business process variation
point model for variation point “Personal budget” from the
business process variability model depicted in Fig. 4.

Type Variant (type) Mandatory Resolution

Sub-process-activity
in-house (sub-process) no design
outsourced (activity) no design

Figure 5. Partial business process variation point model.

Variability distribution model kind. Models created
based on this model kind show where in the business process
variability occurs (in terms of sub-processes of a business
process), as well as what types of variability occur. The
model created based on this model kind visualizes a
frequency distribution of variation points and their type to
help architects and evaluators identify sub-processes in a
business process which require most attention with regard to
their impact on the software architecture. The variability
distribution model for the WMO process is shown in Fig. 6.
“Research and decision phase” includes three variation
points of different types. Variability in activities is usually
easier to handle than variability in sub-processes which cause
more ripple effects in the architecture.

Figure 6. Variability distribution model in the e-government case study.

Variability mapping model kind. The variability
mapping model kind describes the mapping of a variation
point from the business process to software components
(e.g., services). Fig. 7 shows the high-level variability
mapping model including the variation point “Personal
budget” from the sub-process “Personal budget phase” in the
e-government case study. We also include the variation point
“Question clarification” from sub-process “Question phase”.
The software artifacts are taken from a real system to support
the WMO law that utilizes multi-tenancy to host tenants of
different municipalities. The implementation is provided by a
software vendor involved in the e-government case study
and implemented in around 20 municipalities over the past
five years. Variation point “Personal budget” maps to a
software component “Process” which is an entity in a case

template provided in a case template catalogue. This
variation point is resolved by choosing a respective case
template that implements the respective variant.
Municipalities use this catalogue through their tenant. Case
templates are customizable templates for products (e.g., a
building permit) or processes (e.g., a WMO request) offered
by municipalities. Similarly, the variation point “Question
clarification” maps to tenants. Boxes in Fig. 7 denote
components, and lines between boxes connectors. Variation
points, including type and variants, are shown as ovals.
Connections between variation points and software artifacts
stem from the metamodel (“referenced in”). Connectors
between software artifacts (e.g., “hosts”, “contains”) are not
in the metamodel as it only defines generic connectors.

Figure 7. Partial variability mapping model in the e-government case study.

Variability interaction model kind. The variability
interaction model kind provides conventions for models to
shows relationships between variation points, variations, and
variation points and variants. Fig. 8 shows a partial
variability interaction model concerning interactions between
variants for the WMO process. We used red color coding do
highlight conflicts. Neutral interactions are simply
represented by “-”.

Variant
Medical
advice

Home
visit

Phone
conversation

Personal
meeting

V
ar

ia
n

t Medical advice - - - -
Home visit - - - -
Phone conversation - conflict - conflict
Personal meeting - conflict conflict -

Figure 8. Variability interaction model in the e-government case study.

Variability quality influence model kind. The
variability quality influence model kind describes
conventions for specifying how variants (if implemented)
could affect quality attributes. If a variation point is open
then models show how variation points are related to quality
attributes. Fig. 9 shows a partial variability quality influence
model for the WMO process. Key drivers in e-government
are privacy, performance and security.

Key drivers
Privacy Performance Security

V
ar

ia
n

t Medical advice + - -
Home visit o o o
Phone conversation - o o
Personal meeting o o o

Figure 9. Partial variability quality influence model.

We express dependencies as “--” (strong negative
impact), “-” (negative impact), “o” (neutral), “+” (positive
impact), and “++” (strong positive impact). Color coding
highlights influences of special interest.

270

V. DISCUSSION

Applicability of viewpoint. Overall, the viewpoint is
applicable in projects with similar characteristics as the two
case study projects reported in this paper. Furthermore, the
viewpoint and model kinds are not bound to any variability
implementation technique. This makes the viewpoint
applicable to other variability-intensive ESS than the ones
we studied in this paper. Moreover, if needed, additional
model kinds can be added to address other variability-related
concerns; the viewpoint metamodel is extensible. We found
that the viewpoint provides a structured way to analyze
variability with regard to concerns elicited from real software
projects. The proposed model kinds help address the
concerns of stakeholders. The model kinds used in the
viewpoint are adequate to understand for example the
interaction between variation points and quality attributes, or
the interaction between variants in the e-government case
study. Furthermore, even though stakeholders and concerns
where identified in Step 1 and 2, we were able to confirm
their relevance in the e-government case study. In some
situations only a subset of model kinds might be selected, in
particular when product lines are developed. In these
situations, some models might already exist that are similar
to the model kinds proposed in the viewpoint (e.g., the
variability interaction model could be replaced by a
conventional feature model). The ESS variability view in the
e-government case study has been created using standard
software modeling tools. Dedicated and more mature tools
could further increase the applicability of the viewpoint.

Limitations of constructing the viewpoint. We used an
exploratory study with graduate students to identify
problems when handling variability during software
architecting. Limitations related to this study are discussed in
[6]. Further limitations are related to using the case study
research methodology for defining and applying the
viewpoint (e.g., construct validity, external validity,
reliability). In both case studies we used multiple sources of
data to identify and evaluate concerns, stakeholders and
model kinds. Furthermore, we chose representative cases of
variability-intensive systems but cannot claim complete
generalizability of the concerns and model kinds. However,
using the model kinds to construct an ESS variability view in
the e-government case study showed that concerns in this
case study were in fact accommodated by the view. We
documented the characteristics of both case studies to help
decide if our findings might be applicable in other similar
situations (see also previous section). To mitigate the risk of
forcing our idea of architecture documentation on the
documentation of the e-government system, we involved
stakeholders in the e-government system.

Limitations of viewpoint. Even though all model kinds
are related and the full power of the viewpoint is leveraged
by using all model kinds, the creation of views requires
effort. We have not conducted a thorough cost analysis of
using the viewpoint. However, neither in the B2B case study
nor in the e-government case study architecture descriptions
for variability existed. Thus, the ESS variability view for
these systems is complementary to existing architecture

descriptions. Also, the viewpoint currently does not support
variability in quality attributes. We did not find an indication
in the two case studies for the need to express variability in
quality attributes. Furthermore, stakeholders and concerns
were elicited from empirical studies but particular projects
might have additional stakeholders or concerns. The
viewpoint metamodel can be extended to accommodate these
concerns. Finally, we do not describe correspondence rules
to express “cross-model” correspondences. Constraints are
currently determined by the shared metamodel.

VI. CONCLUSIONS

The ESS variability viewpoint provides reusable
architecture knowledge and helps construct variability views
based on the needs derived from industrial organizations. An
ESS variability view helps reason about variability concerns.
We have shown how variability models can be constructed
starting from business process variability and describe how
variability affects the software architecture design. As part of
our future work, we study additional model kinds (e.g., to
express variability in quality attributes). Moreover, we will
integrate the viewpoint in a reference architecture design
process for variability-intensive software systems. Finally,
we will relate the ESS variability viewpoint to viewpoints for
documenting runtime behavior and architecture decisions.

ACKNOWLEDGMENT

We thank the organizations involved in the studies, and
R. Hilliard and U. van Heesch for discussions. This research
has been sponsored by NWO SaS-LeG, 638.000.000.07N07.

REFERENCES

[1] F. Bachmann and P. C. Clements, "Variability in Software Product
Lines," SEI CMU, Pittsburgh, PA, Technical Report CMU/SEI-2005-
TR-012, 2005.

[2] ISO/IEC, "Systems and Software Engineering - Architecture
Description." ISO/IEC 42010, 2011.

[3] J. Zachman, "A Framework for Information Systems Architecture,"
IBM Systems Journal, vol. 38, pp. 454-470, 1999.

[4] L. Chen, M. A. Babar, and N. Ali, "Variability Management in
Software Product Lines: A Systematic Review," in 13th International
Software Product Line Conference (SPLC) San Francisco, CA:
Carnegie Mellon University, 2009, pp. 81-90.

[5] Y. Ishida, "Software Product Lines Approach in Enterprise System
Development," in 11th International Software Product Line
Conference Kyoto, Japan: IEEE Computer Society, 2007, pp. 44-53.

[6] M. Galster and P. Avgeriou, "Handling Variability in Software
Architecture: Problems and Implications," in 9th IEEE/IFIP Working
Conference on Software Architecture Boulder, CO: IEEE Computer
Society, 2011, pp. 171-180.

[7] R. K. Yin, Case Study Research - Design and Methods. London, UK:
Sage Publications, 2009.

[8] J. Gerring, Case Study Research - Principles and Practices. Cambridge,
NY: Cambridge University Press, 2006.

[9] T. B. C. Arias, P. America, and P. Avgeriou, "Defining and
Documenting Execution Viewpoints for a Large and Complex
Software-intensive System," Journal of Systems and Software, p. 15,
2010.

[10] M. Svahnberg, J. van Grup, and J. Bosch, "A Taxonomy of Variability
Realization Techniques," Software - Practice and Experience, vol. 35,
pp. 705-754, April 2005.

271

