
D
s

T
a

b

a

A
R
A
A

K
V
V
A
R

1

t
i
I
t
d
J

-

-

-

i
s

(

0
d

The Journal of Systems and Software 84 (2011) 1447– 1461

Contents lists available at ScienceDirect

The Journal of Systems and Software

jo u rn al hom epage: www.elsev ier .com/ locate / j ss

efining and documenting execution viewpoints for a large and complex
oftware-intensive system

rosky B. Callo Ariasa,∗, Pierre Americab, Paris Avgerioua

Department of Mathematics and Computing Science, University of Groningen, Nijenborgh 9, 9747 AG Groningen, The Netherlands
Philips Research and Embedded Systems Institute, The Netherlands

 r t i c l e i n f o

rticle history:
eceived 11 June 2010
ccepted 18 November 2010
vailable online 25 November 2010

a b s t r a c t

An execution view is an important asset for developing large and complex systems. An execution view
helps practitioners to describe, analyze, and communicate what a software system does at runtime and
how it does it. In this paper, we present an approach to define and document viewpoints that guide the
eywords:
iewpoints
iews
rchitecture
untime

construction and use of execution views for an existing large and complex software-intensive system.
This approach includes the elicitation of the organization’s requirements for execution views, the ini-
tial definition and validation of a set of execution viewpoints, and the documentation of the execution
viewpoints. The validation and application of the approach have helped us to produce mature viewpoints
that are being used to support the construction and use of execution views of the Philips Healthcare MRI
scanner, a representative large software-intensive system in the healthcare domain.
. Introduction

The usage of several architectural views is a common practice
o construct and document the architecture of large software-
ntensive systems (Hofmeister et al., 2007; ISO/IEC-JTC1/SC7,
SO/IEC 42010, 2007). The IEEE 1471 standard and its successor,
he ISO/IEC 42010 standard provide a widely accepted conceptual
efinition of architectural views, viewpoints and models (ISO/IEC-

TC1/SC7, ISO/IEC 42010, 2007):

 An architectural view is a representation of a set of system
elements and relations associated with them, conforming to a
specific viewpoint.

 An architectural viewpoint frames particular concerns of the
system stakeholders and consists of the conventions for the con-
struction, interpretation, and use of an architectural view.

 A view may consist of one or more architectural models. Each
such architectural model is developed using the conventions and
methods established by its associated viewpoint. An architectural
model may participate in more than one view.
As part of our research on the evolvability of large software-
ntensive systems (van de Laar et al., 2007), we observed that
uitable architectural views are indispensable assets to improve

∗ Corresponding author.
E-mail addresses: trosky@cs.rug.nl (T.B. Callo Arias), pierre.america@philips.com

P. America), paris@cs.rug.nl (P. Avgeriou).

164-1212/$ – see front matter © 2010 Elsevier Inc. All rights reserved.
oi:10.1016/j.jss.2010.11.908
© 2010 Elsevier Inc. All rights reserved.

and sustain the evolvability of systems (Muller, 2004, 2009). Such
views help practitioners to understand the existing system, to plan
and evaluate intended changes, and to communicate them to others
efficiently. In particular, we are interested in execution views, which
consist of a set of models that describe and document what a soft-
ware system does at runtime and how it does it. The term runtime
refers to the actual time that the software system is functioning
during testing or in the field.

The runtime behavior and structure of a software-intensive
system as well as their evolution can be particularly complex.
The software part of a software-intensive system can have het-
erogeneous implementations and consist of multiple processes,
each with multiple threads, and deployed across several comput-
ers. Consequently the runtime of software-intensive systems can
change more often than other system aspects due to its complex
dependencies not only with the software elements but also with the
hardware elements. In addition, when the runtime of a system is
tightly constrained by performance and distribution requirements,
tuning any of the system characteristics to align with changing
requirements will likely change the runtime of the system as well.
Therefore, up-to-date execution views are an essential prerequisite
to understand the complexity of software-intensive systems and be
prepared to respond effectively to change.

However, to the best of our knowledge describing the runtime of
software-intensive systems has not received enough attention. This

prompted us to focus particularly on supporting practitioners on
how to construct execution views for large and complex software-
intensive systems. There are two ways to construct architectural
views: either reuse the guidelines of predefined viewpoints avail-

dx.doi.org/10.1016/j.jss.2010.11.908
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
mailto:trosky@cs.rug.nl
mailto:pierre.america@philips.com
mailto:paris@cs.rug.nl
dx.doi.org/10.1016/j.jss.2010.11.908

1448 T.B. Callo Arias et al. / The Journal of Systems and Software 84 (2011) 1447– 1461

menti

a
1
O
a
p
v

t
s
fi
t
f
b
q
a
i
t
v
i
a
t
t
v

o
(
p
M
d
n
s
u
t
c
I
w

p
a
d
o
t
I
e
c

o
t
i
i

of the system that can execute concurrently.
- The behavior description of Clements et al. (2002), which proposes

a language-independent way to document behavioral aspects of
the interactions among system elements.

Execution
View

Execution
Viewpoint 1

Conforms to

1

0..1Cites 0..1 1..n1..n1..n1..n
Fig. 1. Defining and docu

ble in the literature (e.g. Clements et al., 2002; Hofmeister et al.,
999; Muller, 2004; Rozanski and Woods, 2005) or define new ones.
ften, for software intensive-systems, the predefined viewpoints
re not a good match, due to the numerous specific concerns of the
articular stakeholders. Therefore, one has to define customized
iewpoints to frame the concerns of the stakeholders at hand.

In this paper, we present an approach to define execu-
ion viewpoints for organizations developing large and complex
oftware-intensive systems through three phases (see Fig. 1). The
rst phase includes the identification of predefined viewpoints in
he literature and the elicitation of the organization’s requirements
or execution views. The organization’s requirements are derived
y observing and interviewing key practitioners with dedicated
uestionnaires. The second phase includes the initial definition
nd validation of a set of execution viewpoints. The initial def-
nition of the execution viewpoints takes place by considering
he concerns and requirements that motivate the creation of new
iewpoints or the customization of predefined viewpoints. The val-
dation focuses on the application and tuning of the initial definition
cross development projects. The third phase is the documenta-
ion of execution viewpoints, which contain reusable knowledge
hat guided the construction and use of execution views during
alidation.

We have applied this approach as part of the documentation
f the execution architecture of a Magnetic Resonance Imaging
MRI) scanner. This system is a representative large and com-
lex software-intensive system, developed by Philips Healthcare
RI (Philips Healthcare: Magnetic Resonance Imaging, 2010). The

efined execution viewpoints have been used and validated in a
umber of development projects. The viewpoints are currently con-
idered mature and are being used to support the construction and
se of execution views for different parts of this system. We expect
hat other organizations and researchers can reuse our approach to
onstruct other execution viewpoints, or other types of viewpoints.
n addition, practitioners can reuse the execution viewpoints that

e define and document in this paper.
The organization of the rest of this paper follows the steps of the

roposed approach. In Section 2, we summarize how we identified
 few predefined viewpoints from the literature. In Section 3, we
escribe how to elicit the requirements of a particular development
rganization interviewing key practitioners. Section 4 summarizes
he initial definition of execution viewpoints and the validation.
n Section 5, we describe and present the documentation of the
xecution viewpoints. Finally, in Section 6, we provide some con-
lusions.

The elaboration of the validation and the documentation phases

f the approach are the main extensions to the previous presen-
ation of the approach in Callo Arias et al. (2009). Other changes
nclude the introduction of the approach and the summary of the
nitial definition of execution viewpoints.
ng execution viewpoints.

2. Predefined execution viewpoints

In this section, we describe our motivation to search for prede-
fined viewpoints and the result of our search.

2.1. Motivation

To define specific execution viewpoints, we searched the lit-
erature for predefined viewpoints that address somehow what a
system does at runtime and how it does. In doing so we con-
form with the conceptual model from the ISO/IEC 42010 standard
(ISO/IEC-JTC1/SC7, ISO/IEC 42010, 2007). Fig. 2 illustrates the part
of the conceptual model that describes the definition of specific
viewpoints, the concepts of viewpoints, views, and models with
respect to execution. According to this model an execution view-
point can cite a predefined viewpoint, in the sense that the former
can be defined reusing (customizing or extending) the latter.

2.2. Identified predefined viewpoints

Our literature search for predefined viewpoints resulted in the
identification of five candidates, which are summarized in Table 1.
To the best of our knowledge, out of all possible candidate view-
points, the selected set has the most comprehensive and elaborated
description for use as predefined execution viewpoints. The sum-
mary describes the names of the viewpoints as presented in the
literature, the set of concerns framed by the viewpoints, and the
kind of system elements used in the models of these viewpoints.

These predefined viewpoints can be classified into two groups
based on their concerns. The first group includes:

- The concurrency viewpoint of Rozanski and Woods (2005), which
describes the concurrency structure of the system, mapping func-
tional elements to concurrency units to clearly identify the parts
Predefined
viewpoint

Execution
Model

Sanctions

Fig. 2. Reuse of predefined viewpoints for an execution viewpoint.

T.B. Callo Arias et al. / The Journal of Systems and Software 84 (2011) 1447– 1461 1449

Table 1
Predefined viewpoints for execution views.

Viewpoint What it describes (concern) System elements

Concurrency (Rozanski and
Woods, 2005)

Task structure and mapping of functional elements to tasks
Inter-process communication and state management
Synchronization and integrity
Start-up, shutdown, task failure, and reentrancy

Processes, process groups, threads, inter-process
communication

Behavior description (Clements
et al., 2002)

Types of communication
Constraints on ordering
Clock-triggered stimulation

Use cases, structural elements, processes, states,
applications, and objects

Deployment (Rozanski and
Woods, 2005)

Hardware required (specification and quantity)
Third-party software requirements and technology
compatibility
Network requirements and capacity and physical
constrains

Processing and client nodes, network links, hardware
components, and processes

Deployment style (Clements
et al., 2002)

Allocation, migration, and copy relations between
software elements and computing hardware
Properties of computing hardware, e.g., bandwidth, and
resource consumption

Software elements (processes) and computing hardware
(processor, memory, disk, etc.)

Execution architecture
(Hofmeister et al., 1999)

Execution configuration and its mapping to hardware
devices

 instan

Processes, tasks, threads, clients, servers, buffers, message
queues, and classes

-

-

a
g
r

3
v

t
t
a
t
i
q
t
a

3

m
p
i
p
c
m
p
a
(

tem performance. Second, an architect in charge of architecting
and designing software interfaces for system-specific hardware
devices. Later, we selected additional stakeholders who were men-
tioned as major contributors or actual users of the chosen document

Table 2
Questionnaires structure.

Group of questions Overview Model-specific

1. Authors and contributors X X
2. Creation and maintenance X X
3. Intended and actual users X X
4. Usage in daily activities (predefined

viewpoint)
X X

5. Usage in other activities
(observations and experience)

X

Dynamic behavior of configuration
Communication protocol
Description of runtime entities and their

The second group includes:

 The deployment viewpoint of Rozanski and Woods (2005), which
addresses how to describe the environment into which the sys-
tem will be deployed including the dependencies the system has
with its runtime environment.

 The deployment style of Clements et al. (2002), which also
addresses how to describe the allocation of components and con-
nectors to execution platforms.

In addition, another predefined viewpoint is the execution
rchitecture of Hofmeister et al. (1999), which spans the two
roups, describing the mapping of functionality to physical
esources and the runtime characteristics of the system.

. Eliciting the organization’s requirements for execution
iews

Eliciting the concerns of stakeholders is of paramount impor-
ance, in order to choose appropriate views (Clements et al., 2002)
hat frame these concerns and identify which views to recover from
n existing system (van Deursen et al., 2004). In order to identify
he requirements for execution views, we conducted a series of
nterviews with key experts of our industrial partner using specific
uestionnaires. In this section, we summarize the key aspects of
he questionnaire design and interviews, and the elicited concepts
nd concerns.

.1. Questionnaire design

The main goal of the specific questionnaires was to collect infor-
ation on which execution views to create, what to describe in a

articular model, how to choose the abstraction level, and how
t should be described. Often, asking these broad questions to
ractitioners does not provide precise or useful answers. To over-
ome this, we designed two types of questionnaires (overview and

odel-specific). To design them, we summarized predefined view-

oints in the literature and our own research observations, and
pplied guidelines on reviewing software architecture descriptions
Obbink et al., 2008).
ces

Overview questionnaires help us to estimate the value of an exe-
cution viewpoint and get an insight on how a given interviewee
may use it. To focus the questionnaire, we centered the questions
on a set of existing documents containing some execution models
that the interviewee created or use often.

Model-specific questionnaires help us to assess how a specific
execution model created or often used by the interviewee aligned
to descriptions of similar models of predefined viewpoints. Thus,
with each model-specific questionnaire we attached at least two
models: the one used or created by the interviewee and a related
example from the literature. Table 2 summarizes the group of ques-
tions for both types of questionnaires, overview and model-specific.
For an example of a full questionnaire, see Appendix I.

3.2. Interviews

To conduct the series of interviews, and keep them manageable
and productive, it is necessary to identify a set of representative
practitioners. We initially involved two stakeholders of the devel-
opment organization who are actual consumers and producers of
execution views. First, a senior designer who documented an exe-
cution view in the past using as a main reference the 4 + 1 View
Model (Kruchten, 1995) aiming to support the analysis of the sys-
6. Description of concerns (predefined
viewpoint)

X

7. Representation language and level of
detail

X

1450 T.B. Callo Arias et al. / The Journal of System

Functional
Mapping

Concurrency Resource
Usage

Deployment

Sou rce of

Construction
Technique

1.. n
Use
1.. n

Stakeholder Development Involves

Execution
Viewpoint

1..n
Requ ires

1..nConcern

1..n
Holds

1..n

Metamodel

Execution
Model

1.. n
Support
1.. n

1..n
Sanctions
1..n

1.. n
Frames
1.. n

1

1..n

Instantiates

1

1..n

Execution View

1
Conforms to

1

1.. n

As Is

1.. n 1.. n

To Be

1.. n

f
s
w
(
a

3

a
t
p
4
m
m
p
a
4
d
i
o
w
m
t
t
o

3

1
c
v
o
d

m
a
s
s
d
a
A
p
e
t
g
r

elaborate in the following paragraphs:

- System understanding: In addition to the result of questions in
groups 2–5, our own observations helped us to identify two

Procedure
Call

Data
Sharing

Code
Utilization

Load/Execute

Data
access

Access

Interaction

Platform
Utilization

Use

Execution
Coordination

Activity

1..n1..n

Execution
Scenario

Thread
1..n1..n

Performs

Task
1..n1..n

Process 1..n1..n

Software
Component

1..n1..n
Require

1..n1..n
Interact

1..n1..n

Processing
Node

1
Deployed in

1

InformationAct ivity1.. n1.. n

Fig. 3. Conceptual model to define execution views and viewpoint.

or the interview, e.g., other software architects, designers, platform
upport engineers, and managers. After conducting an interview,
e validated the collected information sending the questionnaire

with answers and comments) to the interviewee who corrected
nd sometimes extended the captured information.

.3. Identified concepts and concerns

Through the series of interviews, we identified a set of concepts
nd relationships between them. Fig. 3 illustrates the concepts and
heir relationships. This conceptual model is based on the model
resented by the ISO 42010 standard (ISO/IEC-JTC1/SC7, ISO/IEC
2010, 2007), but here we limit ourselves to execution views,
odels, and viewpoints instead of general architectural views,
odels, and viewpoints from the standard. The functional map-

ing, deployment, concurrency, and resource usage viewpoints
re specific viewpoints that we define and document in Sections
.1 and 5 respectively. In addition, we include concepts such as
evelopment activity, metamodel, and construction technique to

llustrate how execution views and viewpoints fit within the devel-
pment process and the organization. In the rest of this section,
e focus on the descriptions of the main concepts (execution
odel and metamodel) and the identified major concerns related

o system evolvability within development activities. Construction
echniques and sources of information are presented in our previ-
us work (Callo Arias et al., 2008).

.3.1. Execution models
From the results (answers and comments) of questions in groups

–4, we identified that a development organization often needs to
onstruct ‘As Is’ and ‘To Be’ execution models to build an execution
iew. The concept of ‘As Is’ and To Be’ are also applicable to models
f other architectural views, but to keep the focus of this paper, we
escribe these concepts for models of an execution view.

‘As Is’ models describe the execution of the current system. These
odels are often created to support the acquisition of knowledge

bout key execution scenarios or the interactions between key
ystem components. A ‘To Be’ model describes the execution of a
ystem that does not yet exist. Such models are typically created to
esign and evaluate one or more alternatives for a future system
nd to communicate the chosen alternative to the implementers.
fter implementation, a new ‘As Is’ model can be created and com-
ared to the chosen ‘To Be’ model. Since nowadays a system is rarely

ver designed from scratch but is typically based on existing sys-
ems (i.e. Brownfield site, Hopkins and Jenkins, 2008), it is often a
ood idea to construct a ‘To Be’ model by modifying or taking as a
eference an existing ‘As Is’ model.
s and Software 84 (2011) 1447– 1461

3.3.2. Metamodel of system execution elements
When identifying the information needs of the practitioners, we

found it very useful to describe the various elements that play a
role in system execution in a metamodel, which defines a num-
ber of concepts that occur in the execution models. Fig. 4 shows
such a metamodel with system execution elements and relation-
ships between them. We developed this in our earlier work (Callo
Arias et al., 2008) and validated and refined it during the interviews.
Most predefined viewpoints (see Table 1) also use several of these
elements, e.g., processes and threads, to create execution models.
Our metamodel extends the concepts of the predefined viewpoints,
including elements and relationships to address the organization’s
requirements that we identified to construct execution views of a
large software system. The particular extensions that we introduce
are elements such as execution scenario, task, software compo-
nent, and activity. These extensions are meant to cope with three
major issues: complexity and size of the system, explicit links with
other system views, and analysis of resource usage. In Section 5,
we describe these extensions in more detail in the discussion of
the identified viewpoints. We also provide a detailed description
of the elements and relationships of this conceptual model in Callo
Arias et al. (2008).

Note that the metamodel does not apply to an individual execu-
tion model, but is shared among the execution models. In this way,
it indicates important relationships between the models and can
help to establish consistency among the models. We expect that
using a single, shared metamodel not only in the execution views
but also across all architectural views may contribute significantly
to their mutual consistency.

3.3.3. Organization concerns related to system evolvability
Based on the result of questions in groups 2–5, we found that

the construction of execution models is a goal-driven and often
problem-driven activity to evolve an existing system. This means
that the concerns of the stakeholders relate to the activities they
perform within a given development project towards specific goals.
Table 3 lists the major organization wide concerns and the devel-
opment activities that need support of execution views, which we
CodePersistent
Data

Platform
Resource

Fig. 4. Metamodel of system execution elements.

T.B. Callo Arias et al. / The Journal of System

Table 3
Organization concerns and development activities supported by execution models.

Concern Development activity

System understanding Education and training, dependency
analysis, and corrective maintenance

Project planning Analysis of alternative and future
architectures and/or designs

Communication Between development units or teams
and with customers and providers

Conformance of design and Architecture documentation,

-

-

-

implementation verification of non-functional
requirements, and testing

aspects of how an execution view supports acquisition of system
knowledge. On the one hand, execution models support system-
specific education and training of new developers. Often new
developers are exposed to execution models before they can start
reading and writing code. This practice helps new developers to
create a mental model of the overall system, the system compo-
nents they develop, and their relations (dependencies) with the
rest of the system components. On the other hand, ‘As is’ execu-
tion models help all practitioners to constantly refresh, validate,
and extend their mental models, in particular to support system
corrective maintenance activities that aim to improve the existing
run-time structure and manage unpredicted system behavior.
Project planning: Practitioners need to construct ‘To be’ execu-
tion models to support two particular activities. On the one hand,
these models are needed to distinguish and analyze the differ-
ence between considered alternative or future architectures and
designs that aim to improve quality attributes such as reliability
(Sozer and Tekinerdogan, 2008), dependability, and safety (Hunt
et al., 2007). This is important, as it is often not obvious how the
realization of the alternative design may affect the structure and
behavior of the system at runtime, and therefore influence other
system quality attributes. On the other hand, as we described in
Section 4.1, execution models are necessary to describe the over-
all system structure, its components, and their interactions that
make up the system functionality of interest. Often system com-
ponents are mapped to development units within or outside the
organization. Thus describing the involved system components
enables the identification of the involved units, and therefore
the planning and budgeting of responsibilities, if possible, as a
downstream process.

 Communication: Another goal of describing the architecture of
a software system is to support the communication between
system stakeholders. In particular, we identified that besides
the mental models that practitioners may have, they need
explicit evidence in a common language (i.e. diagrammatic rep-
resentations of execution models) to supports three links of
communication within the development organization. First, exe-
cution models are useful to transfer technical knowledge of the
system design and implementation. This supports the communi-
cation of designers and developers with architects and managers.
Second, execution models are needed to describe how the sys-
tem uses third-party components at runtime. These models will
enable the communication of development units (external or
internal) with customer designers, developers, and testers. Third,
execution models are needed to describe how the software sys-
tem interacts with and uses the resources of its runtime platform.
These models will enhance the communication of the design and
implementation units with the (internal or external) unit sup-
porting the system runtime platform.
 Conformance of design and implementation: Large and complex
software-intensive systems have strict constraints on their non-
functional properties such as reliability, safety, and performance.
Ideally, the architecture and design should describe how to
s and Software 84 (2011) 1447– 1461 1451

achieve those requirements, but often the implementation devi-
ates from these requirements at runtime. This usually happens
when the implementation uses third party or off-the-shelf com-
ponents, facilities provided by the implementation technology
and the runtime platform, such as dynamic loading of shared
libraries, plug-in mechanisms, and mechanisms to manage mem-
ory access. Thus, to verify non-functional requirements and
properly test the system, it is often necessary to construct ‘As is’
execution models to describe changes in the access and utilization
of resources such as shared memory, shared code libraries, com-
munication paths, and power consumption. Thus, ‘To be’ models
can be updated, extended, and analyzed.

4. Initial definition and validation of execution viewpoints

The main findings (requirements and observations) from ques-
tions in groups 5–7, and the identified concepts and concerns
(see Section 3.3) have lead us to the creation of four execution
viewpoints to frame our stakeholders concerns. In this section,
we discuss the initial definition of the execution viewpoints and
describe how we validated three of them.

4.1. Initial definition of execution viewpoints

The findings show that the predefined viewpoints (see Table 1)
are useful, but we needed to define specific viewpoints with guide-
lines to deal with specialized concerns such as managing system
complexity and size, making links with other system views explicit,
and describing and analyzing actual resource usage. Thus, we
defined four specialized viewpoints. Two viewpoints are based on
predefined viewpoints (concurrency and deployment) and two are
additional viewpoints (functional mapping and resource usage).
We presented an extended version of the initial definition in Callo
Arias et al. (2009) and in a technical report inside Philips Healthcare
MRI. In this section, we focus on the concerns and requirements that
motivated the creation of new viewpoints or the customization of
the predefined viewpoints.

4.1.1. Functional mapping
Certain practitioners, such as managers and architects are typi-

cally more familiar with the functionality and the main functional
components of the system. By contrast, designers and platform sup-
port engineers are often more familiar with processes and threads.
For this reason, a number of practitioners are concerned with how
to describe and analyze the relations between the system func-
tionality, system functional components (software components),
and actual runtime elements. The functional mapping viewpoint
frames this concern and provides guidelines to construct and use
functional mapping views.

A functional mapping view is composed by execution models
that describe the relations between functional components (inter-
acting together to deliver the system functionality) and actual
runtime elements (including software and hardware elements).
The main requirement for large and heterogeneous systems is that
functional mapping views should enable practitioners who are less
familiar with execution elements to understand the actual runtime
of the system consistently and without being overwhelmed by the
size and complexity of the system. Section 5.1 describes further
details and the extension of the definition of this viewpoint.

4.1.2. Execution deployment
This viewpoint is a customization of predefined deployment
viewpoints (Clements et al., 2002; Rozanski and Woods, 2005).
We defined this customization to support the description of the
allocation of system execution elements to processing nodes and
the environment into which the system is deployed. Compared

1452 T.B. Callo Arias et al. / The Journal of Systems and Software 84 (2011) 1447– 1461

ent m

t
i
t

(

(

(

Fig. 5. Customized deploym

o predefined deployment viewpoints, the requirements that we
dentified indicate that such a deployment view should show addi-
ional information on three aspects (see Fig. 5):

a) Detail of processing nodes: Boxes that describe processing nodes
in a deployment model should describe more consistent and
useful information. For instance, the predefined deployment
viewpoint (Clements et al., 2002), describes that runtime plat-
form and network models should include information about
the characteristics of the processing nodes and the functional
elements inside them. To do this for a complex system, while
keeping an overview, we decided to represent functional ele-
ments with software components (groups of processes) thereby
reducing complexity when the number of processes is large and
details are not necessary. In addition, we identified that it is
required to describe the allocation of important code libraries,
data repositories, and system-specific hardware devices to
processing nodes, making explicit distinctions between these
elements and software components.

b) Detail of links between processing nodes: Often deployment mod-
els use lines to describe links between processing nodes such
as network or communication lines. However, these links often
lack descriptions about what they actually serve for at runtime.
We identified that for an execution view, links should describe
at least three aspects: the function of the link, the link’s technol-

ogy characteristics, and the capacity or bandwidth the system
requires from the link.

c) Organization of processing nodes: We identified that the dia-
grammatic representation of a deployment model should

Fig. 6. Examples of describing resource u
odel for an execution view.

resemble as much as possible the actual physical and geograph-
ical distribution of the system. This is particularly required to
make some design decision explicit, such as safety issues and
rules to manage the influence of physical phenomena (e.g. mag-
netism) on processing nodes. For instance, the diagram can
indicate how processing nodes and the software components
they contain can be located close to user interface elements or
scanner control devices.

4.1.3. Resource usage
The practitioners we interviewed were also very concerned with

the adequate resource usage of the system at runtime. The resource
usage viewpoint frames this concern and provides guidelines to
construct and use resource usage views. The execution models in
a resource usage view describe the metrics, rules, protocols, and
budgets that define and govern how the software actually accesses
or uses available resources such as data, system code artifacts (soft-
ware), and runtime platform resources (hardware and software).

It is important to notice that describing resource usage is dif-
ferent from describing required resources. The latter is addressed
by the deployment viewpoint, where deployment models describe
network connections with the capacity of the physical network
link. Instead, resource usage models describe the actual capacity
used overtime enabling the analysis of the difference between the
required (budgeted) network capacity and the provided capacity.

For example, Fig. 6 presents a set of execution models that we
constructed to initiate the description and analysis of the actual
processor usage of two alternative designs for a key feature of the
Philips MRI scanner.

sage to analyze alternative designs.

T.B. Callo Arias et al. / The Journal of Systems and Software 84 (2011) 1447– 1461 1453

Table 4
Validation projects for the initial definition of execution viewpoints.

Project Goal Practitioners Viewpoints

1 Redesign of data configuration
management for dedicated hardware

Architect and a designer Functional mapping

2 Tune data-intensive and Architect, designer, platform support
er, an

Execution profile

ect, de
er, an

4

v
t
b
c
o
r
w
fl
c
r

i
n
o
s
T
g
t
p
e
t
n
a
n
p
d

4

t
o
p
a
d
d
d
m
t
c
p
u

v
c
T
f

•

computation-intensive features engine
3 Improve the system start-up Archit

engine

.1.4. Execution concurrency
This viewpoint is a customization of the predefined concurrency

iewpoint (Rozanski and Woods, 2005). We defined this customiza-
ion to support the description of actual control flow and data flow
etween runtime elements. Practitioners are concerned with actual
ontrol and data flow because these comprise the runtime behavior
f a system in terms of order of interactions, situations of concur-
ency, communication channels, and time-based interaction. Thus,
e identified that it is necessary to describe actual control and data
ow but at an overview level, especially to make the dependen-
ies between processes, threads and other system elements (data
epositories and the runtime platform elements) explicit.

Reviewing examples of concurrency models, as part of the
nterviews, we identified that proper abstractions and pragmatic
otations are essential to describe the actual concurrency at an
verview level. The abstractions that we have identified are data
haring, procedure call, and execution coordination (see Fig. 4).
hese abstractions should help the characterization and aggre-
ation of actual execution activities between the processes or
hreads of interacting software components. We observed that
ragmatic notations are informal representations that practition-
rs use guided by practical experience and observation rather than
heory. For example, boxes are associated with software compo-
ents and processing nodes but nothing particular for processes
nd threads. Therefore, it was necessary distinctive, yet pragmatic,
otations for processes and threads, e.g., parallelograms or sim-
le UML diagrams using stereotypes. Section 5.3 describes further
etails and the extension of the definition of this viewpoint.

.2. Validation of the initial definition of execution viewpoints

Viewpoints provide a set of reusable guidelines that help archi-
ects to construct and effectively use architecture descriptions,
rganized into the corresponding views. Thus, the value of a view-
oint can be established if the viewpoint proves to be reusable
nd readily applicable, perhaps after small customizations, across
ifferent development projects. To establish this for our initial
efinition of viewpoints in practice, we were involved in several
evelopment projects within Philips Healthcare MRI. Table 4 sum-
arizes three development projects that gave us the opportunity

o apply and fine-tune the initial definition of three of the four exe-
ution viewpoints. The table includes the goal of the development
roject, the involved practitioners, and the execution viewpoints
sed in the projects.

In the projects, the application of the initial definition of
iewpoints mainly supported a reverse architecting approach to
onstruct execution views for the Philips Healthcare MRI scanner.
he validation of the viewpoints in the three projects took place as
ollows:

In the first project, we introduced the initial definition of the func-
tional mapping viewpoint to a software architect and a designer

leading the project. The viewpoint supported the construction
and presentation of a set of functional mapping models, especially
models that describe the relations between the system func-
tionality, functional components, and runtime aggregations of
d provider Resource usage
signer, platform support
d team leaders

Execution profile
Execution concurrency

configuration data. These models enabled the top-down analysis
and identification of runtime dependencies in the data configu-
ration of dedicated hardware devices in the Philips Healthcare
MRI scanner. In this project, we identified the need to ana-
lyze and zoom into the details of the relations described by
functional mapping models. Together, the descriptions of the
mapping relations and their details provided an outline or pro-
file of the analyzed system function or feature. Building on this
result, we extended and renamed the initial definition of the func-
tional mapping viewpoint as the execution profile viewpoint (see
Section 5.1).

• In the second project, we introduced the definitions of the execu-
tion profile and resource usage viewpoints to the same software
architect from the first project and a different designer. The def-
inition of the viewpoints guided the construction and use of an
execution view of key data-intensive and computation-intensive
features of the Philips Healthcare MRI scanner. The goal of the
project required the participation of a platform support engineer
and a provider of third-party components, with whom the archi-
tect and the designer analyzed a set of tradeoffs and the impact
of using third-party components in the involved features. In this
project, we reused the definition of execution profile viewpoint
and extended the definition of the resource usage viewpoint. We
identified how to construct resource usage models at different
levels of abstraction, e.g., task, component, and process–thread
level, and their respective value for various practitioners (see
more details in Section 5.2).

• In the third project, we introduced the definitions of the execu-
tion profile and execution concurrency viewpoint to the same
architect and designer of the second project. The definition of the
viewpoints guided the construction and use of an execution view
for the start-up of the Philips Healthcare MRI scanner. In contrast
to the previous projects, the practitioners combined the con-
struction of the execution view with sketching execution models
according to the definitions of the execution viewpoints. It helped
to discuss the hypothesis of the actual runtime of the system
start-up, but also to perceive the acceptance of the viewpoints by
practitioners. The goal of the project required the participation of
several team leaders and a platform support engineer to analyze
the opportunities of improvements described in the constructed
view. In addition, we extended the definition of the execution
concurrency viewpoint identifying how to construct execution
models that describe concurrency at the level of task and finer
workflow entities (see more details in Section 5.3).

5. Documentation of execution viewpoints

The validation of the initial definition of the execution view-
points helped us to verify and elaborate the identified requirements
and concerns for execution views interacting with various prac-
titioners. This allowed us to fine-tune the initial definition of
execution viewpoints and construct a more comprehensive docu-

mentation of the validated execution viewpoints. In order to align
with the ISO/IEC 42010 std. we used the documentation template
proposed in the standard for the four execution viewpoints (Callo
Arias et al., 2010). From the proposed template (see Fig. 7), the

1454 T.B. Callo Arias et al. / The Journal of Systems and Software 84 (2011) 1447– 1461

o docu

fi
t
c
h
a
l
k
v
m

5

u
o
d
t
c

5

s
a

•

•

•

l
c

5

c
a
t
m
t
i

t
e
m
s

Fig. 7. Templates t

elds that are included in the description of the next sections are
he overview of the documented viewpoint, the set of architectural
oncerns framed by the viewpoint, the typical stakeholders that
old these concerns, and the kinds of execution models. We have
dded also two extra fields: construction guidelines, and use guide-
ines. The construction guidelines describe how to construct the
ind of models that address the concerns framed by the respective
iewpoint. The use guidelines describe how to use the constructed
odels to support a set of usual development activities.

.1. Execution profile (formerly called functional mapping)

The execution profile viewpoint supports the construction and
se of an execution profile view. An execution profile view consists
f models that provide overview and facilitate the description of
etails about the runtime of a software-intensive system’s func-
ionality, especially without being overwhelmed by the size and
omplexity of the system implementation.

.1.1. Concerns and stakeholders
The information described by an execution profile view repre-

ents actual and tangible evidence to support top-down analysis
ctivities that address the following concerns:

What are the major components that realize a given system func-
tion?
What are the high-level dependencies that couple major compo-
nents?
What is the development team that develops or maintains a given
system’s function?

The typical stakeholders that hold these concerns include project
eaders, architects, testers, operating system supporters, and new-
omers in a development organization.

.1.2. Model kinds
The kind of models that stakeholders can use to address the

oncerns framed by this viewpoint include functional mapping
nd dependency matrix models. These kinds of models support
he description of the runtime of a system using high-level ele-

ents (e.g., tasks, software components, processes), aggregations
hat characterize data and code resources, and detailed runtime
nformation.

A functional mapping model is a graph-based representation

hat describes relationships between high-level elements of a key
xecution scenario. Fig. 8 illustrates an example of a functional
apping model. The notations of a functional mapping model con-

ist of four aspects. (1) A scenario is described as a set of tasks
ment viewpoints.

linked to the software components that realize each of them, e.g.,
using color-coded edges. (2) Each software component is described
together with its corresponding set of running processes, e.g., using
a record structure whose fields represent the processes, following
the definition of a software component described in Section 3.3.2
and illustrated in Fig. 4. (3) The links from the task to the software
components continue to describe the software components’ run-
time activity, e.g., read, write, and execute on the involved data,
code, or platform resources of the system. (4) The involved data,
code, or platform resources are represented as high-level aggrega-
tions. For example, Configuration Repository, in Fig. 8, aggregates
a set of configuration files that are used in the given scenario.

A dependency matrix model is a matrix-based representation
that supports the analysis of relationships and their details to
determinate dependencies between major runtime elements. Fig. 9
illustrates a dependency matrix model. The notations of this matrix
model include the following two aspects: (1) Rows and columns
represent high-level abstractions (tasks or software components);
(2) The cells in a dependency matrix represent quantifications of
the elements that build the high-level abstractions or the runtime
activities of these elements (e.g., reading and writing operations).
The quantifications in the cells are used to analyze relationships
between tasks, software components, or combinations of these ele-
ments interacting in the given execution scenario. For example, the
matrix in Fig. 9 was constructed to describe relationships between
the tasks. The quantifications in the cells are the number of libraries
shared by the software components interacting within the given
tasks. The sort of information to be described by the columns, rows,
and cells can be configured, based on the provided tool support and
the stakeholders’ concerns.

5.1.3. Guidelines to construct an execution profile view
• Given the system functionality under analysis, the architect needs

to choose a set of key execution scenarios (e.g., test cases and inte-
gration tests), which cover the representative system’s runtime
behavior and structure related to the given system functionality.

• To manage size and complexity, a key scenario should be decom-
posed into a sequence of tasks. A task of an execution scenario
is an aggregation of a set of activities and events triggered by
the end-user or automatically executed by the system within the
workflow of the scenario.

• Architects can extract information about the actual sequence of

tasks or workflow of a scenario from design documents, or run-
time data produced by logging mechanisms that are part of the
system infrastructure or monitoring utilities provided by the sys-
tem platform.

T.B. Callo Arias et al. / The Journal of Systems and Software 84 (2011) 1447– 1461 1455

unctio

•

Fig. 8. Example of a f

When using runtime data to construct an execution profile
view, architects should extract the following information: (1)
The actual set of involved software components and their
corresponding set of processes and threads; (2) Aggregations
that represent system data repositories, code libraries/packages,
and if possible the system specific hardware devices; (3) The
execution activity that describes how software components’ pro-

cesses use data repositories, code libraries, and system specific
devices.

Fig. 9. Example of a depen
nal mapping model.

5.1.4. Guidelines to use an execution profile view
Both, functional mapping and dependency matrix models

describe runtime information about the sequence of tasks within
a execution scenario, the set of software components and their
respective set of processes, and the distinction of the execution
activity per task and per software component on data reposito-
ries, code modules, and system-specific resources. This information

helps the various stakeholders to analyze the runtime of a system
in the following ways:

dency matrix model.

1 ystems and Software 84 (2011) 1447– 1461

•

•

•

•

5

m
t
a
u
u
v
s
e

5

t

•

•

•

•

•

t
d

5

u
s
d
r
t

c

456 T.B. Callo Arias et al. / The Journal of S

Project leaders and newcomers can use an execution profile view
to learn about the system functionality, the set of major com-
ponents (hardware, software, and data) that realize it, and the
high-level dependencies that couple them.
Execution profile views contain information to support down-
stream planning of development projects. For instance, stake-
holders can identify the development force, i.e. internal and
external teams that are in charge of the development and mainte-
nance of the identified components that perform a given system
function to be changed within a development project.
For testers and operating system supporters, an execution pro-
file view provides information to identify the actual processes
and execution elements such as data repositories and platform
resources that may influence or play a role in the design of test
cases, the assessment of test results, and the report for corrective
maintenance activities.
Architects and project leaders can use dependency matrix models
to identify relationships between the tasks of a scenario, between
the software components of a scenario, and between the tasks and
software components of a scenario. Characterizing an identified
relationship as dependency will respond on the impact of change
perceived by the stakeholder.

.2. Resource usage viewpoint

Software intensive-systems include software and hardware ele-
ents. Software elements are considered as sets of instructions

hat govern the use of hardware elements (Woodside, 2001), such
s processors, memory, disk, and network interfaces. The resource
sage viewpoint supports the construction and use of a resource
sage view. A resource usage view consists of models that pro-
ide overviews and facilitate the description of details of how the
oftware elements of a software-intensive system use hardware
lements at runtime.

.2.1. Concerns and stakeholders
The information described by a resource usage view addresses

he following concerns:

How to assure adequate resource usage and justify the devel-
opment effort needed to accommodate hardware resources
changes?
What are the metrics, rules, protocols, and budgets that govern
the use of hardware resources at runtime?
How do the various types of software elements (e.g., proprietary
and third party) consume resources such as processor and mem-
ory within key execution scenarios?
Does the realization of the system implementation has an effi-
cient resource usage?
What are the bottlenecks and delays of the system and their root
cause?

The typical stakeholders that hold these concerns include sys-
em administrators, platform/infrastructure supporters, architects,
esigners, software engineers, and testers.

.2.2. Model kinds
A resource usage view includes models that stakeholders can

se to describe the as-is usage of hardware resources (e.g., proces-
or, memory, and network) within a given execution scenario at
ifferent levels of abstraction. According to the level of abstraction,

esource usage models can be classified as three kinds of models:
ask, component, and process–thread resource usage models.

The first model kind, task resource usage models, is the most
oarse-grained representation of resource usage information. A
Fig. 10. Example of a task resource usage model.

model of this kind describes resource usage showing the corre-
lation between the duration of the tasks of an execution scenario
and the consumption of the given hardware resource(s). For exam-
ple, the model in Fig. 10 describes memory usage across the tasks
of the Philips MRI scanner’s start-up. The second model kind, com-
ponent resource usage models, is a finer representation of resource
usage information. A model of this kind describes resource usage
showing the correlation between the duration of software compo-
nents’ runtime activity and consumption of the given hardware
resource(s). Fig. 11 illustrates an example of this kind of model
that describes the processor usage of the software components in
the Philips MRI scanner’s Recon computer, which serves the main
computation-intensive function of this system. The third model
kind, process–thread resource usage models, is the most fine-grained
representations of resource usage. A model of this kind describes
resource usage showing the correlation between the duration of
processes and threads’ runtime activity and the consumption of
the given hardware resource(s). Fig. 12 illustrates an example of
this kind of model.

The three kinds of resource usage models share the following
four common notations. (1) Horizontal bars represent aggrega-
tions of runtime activity at task, component, or thread level. The
length of a horizontal bar represents the duration of the aggre-
gated runtime activity. (2) Aggregations are distributed along a
horizontal time axis to illustrate their occurrence over time. (3)
Aggregations should be vertically distributed to assemble their
actual distribution onto the system processing nodes. For example,
Fig. 11 illustrates aggregations of runtime activity at the component
level, which are vertically distributed across two system comput-
ers, Scanner and Recon. (4) Each kind of model can require two
vertical axes. A left axis is the reference to identify the involved
runtime element, e.g., software components or thread. The right
axis is the reference for the metrics of the resource usage values,
e.g., gigabytes of consumed memory.

5.2.3. Guidelines to construct a resource usage view
• Resource usage descriptions should be based on actual resource

usage measurements which can be collected using tools
such as Process monitor or Windows Performance Analyzer
(Russinovich, 2010).

• Runtime measurements should be collected from a set of execu-
tion scenarios, which the development organization identifies as

a representative benchmark of the system feature under analysis.

• The benchmark should be run using a representative input, e.g.,
data sets, to capture a representative behavior of the hardware
resources involved in the feature under analysis.

T.B. Callo Arias et al. / The Journal of Systems and Software 84 (2011) 1447– 1461 1457

39:3636:0032:2428:4825:1221:3618:0014:2410:4807:1203:3600:00

Execution Time (mm:ss)

0

20

40

60

80

100

RECONSTRUCT OR SCANNER Processor Usage

SCANNER COMPUTER

RECON COMPUTER

pone

•

•

•

5

t
r

•

Fig. 11. Example of a com

To correlate resource usage information with architectural
abstractions, runtime measurements should be complemented
with workflow information (extracted form sources such as log-
ging). Thus for descriptions at the software component level e.g.,
Fig. 11, runtime information should include: (a) the actual set
of involved software components and their corresponding set of
processes; (b) the execution periods of each software component
that is involved in the execution scenario. For descriptions at the
thread level, e.g., Fig. 12, runtime information should include the
actual set of involved process and their respective threads.
To identify the set of actual threads, it will be useful to have at
hand a concurrency model of the scenario under analysis (see
Section 5.3).
In addition, execution information should include the execution
periods of the identified threads, i.e. aggregations of consecu-
tive thread execution activity, and when possible the control and
dataflow between threads.

.2.4. Guidelines to use a resource usage view
The information described by resource usage models help

he identified stakeholders to address their concerns about the

esource usage in the following ways:

Software architects, designers, and platform supporters, can use
task resource usage models to identify, predict, and tune resource

00:4100:3500:2800:2100:1400:0700:00

Execution Time

Threads Workin

A_ADUI::(NULL)

A_ADUI::COMPEXAM

A_ADUI::MAIN

P_QMUI::USERLOG

SCU:: UNKNOWN

SCU::(NULL)

SCU::DMICOM

SCU::EVENTTHREAD

SCU::IMG-PROC

SCU::PMSTRANSFERPERFORMER

SCU::PULLSCHEDUL ER

SCU::PUSHSCHEDULER

Fig. 12. Example of a process–thr
nt resource usage model.

usage budgets. For example, the model in Fig. 10 helped architects
to identify the actual memory usage across two of the main task
of the start-up of the Philips MRI scanner.

• Software designers may also use resource usage models, e.g.
Fig. 11, to analyze alternative architectures or designs and com-
pare them based on how efficiently processors or memory are
used to deliver key computation- or data-intensive system func-
tions.

• Designers and software engineers can use resource usage models
to identify opportunities to tune and match design and imple-
mentation. For instance, models like Figs. 11 and 12 helped to
identify correlations between delays or dead times analyzing
peaks and valleys in the representation of resource usage activity.

• In overall, resource usage models are useful evidences that ease
the communication and sharing of knowledge between internal
and external teams. For example, designers, platform support
engineers, and external providers can drill down into the actual
resource usage of a component, process, or thread without look-
ing at the implementation code.

• Testers may use resource usage models in the definition and
improvement of benchmarks for the design and execution of test

and verification procedures. Having resource usage models of a
given execution scenario before and after it is changed, serve
as evidence to track, describe, and communicate the desired or
undesired variations of the runtime of the system.

01:2301:1601:0901:0200:5500:48

(mm:ss)

45

55

65

75

85

95

105

115

g Sets (MB) Handles x10

ead resource usage model.

1458 T.B. Callo Arias et al. / The Journal of Systems and Software 84 (2011) 1447– 1461

Background Processes

PF Cli ent Recon

PF Cli ent Scann er

Start DH CP/TFTP

Foregrou nd Processe s

Start-up of MR Boot Rec onstructor Service

Recon Restart

Copy Recon Soft ware

Recon Soft ware St art- up

Copy DAS Image

DAS Reboot

Start-up of MR Boot Spectrometer Service

DAS Initialization

DAS Read Configuration Files

DAS Firm ware Download

39.05%

66.70 %

31.82%

0.29%

23.06%

0.67%

28.96 %

20.79%

10.90%

0.01%

18.19%

0.78 %

1.28%

1.69%

0.05%

0% 10% 20% 30% 40% 50 % 60% 70 % 80% 90 % 100%

% of Total Start-up Time

Reconstructor

DAS

Host

orkflo

5

a
v
e
r
o
2
s
d
d
o
p
d
p

5

c

•
•

•

•

e

5

e
a

t
e
e
t
u
i
s

of the actual control- and data-flow for the execution scenario
under analysis. This model complements the resource usage model
presented in Fig. 12. The notation of models of this kind includes
the following three characteristics: (1) Runtime processes are rep-
DAS Hardware Init

Fig. 13. Example of a w

.3. Execution concurrency viewpoint

The execution concurrency viewpoint supports the construction
nd use of execution concurrency views. An execution concurrency
iew consists of models that provide overviews of how the runtime
lements of a software-intensive system execute concurrently at
untime. The execution concurrency viewpoint is a customization
f the predefined concurrency viewpoint (Rozanski and Woods,
005). We identified that in practice the runtime concurrency of a
ystem often deviates from its designed concurrency, which implies
ifferences between the designed and the actual control flow and
ata flow between software components. Control flow defines the
rder of execution and synchronization between software com-
onents to use or access the various system resources. Data flow
escribes how data is processed and flows through software com-
onents and other system elements such as data repositories.

.3.1. Concerns and stakeholders
An execution concurrency viewpoint frames the following con-

erns:

Which runtime elements execute concurrently?
How does the runtime concurrency match the designed concur-
rency?
What are the aspects that constrain, coordinate, and control the
system’s runtime concurrency?
What are the opportunities to improve the system’s runtime con-
currency?

These concerns are hold by stakeholders like architects, design-
rs, software engineers, testers, and operating system supporters.

.3.2. Model kinds
The kinds of models that address the concerns framed by an

xecution concurrency viewpoint include workflow concurrency
nd process–thread structure models.

A workflow concurrency model is a Gantt-chart like representa-
ion that illustrates temporal relations between high-level runtime
lements (e.g., tasks or software components). Fig. 13 presents an
xample of a workflow concurrency model. This model describes

he runtime concurrency of tasks that make up the complete start-
p of the Philips MRI scanner. The notation of models of this kind

ncludes the following three characteristics: (1) Elements such as
cenario’s tasks are represented as horizontal bars. (2) The horizon-
10.17%

w concurrency model.

tal organization of these bars corresponds to a time axis, which is
the reference to describe the duration of a task over time. (3) The
vertical organization of a task describes its distribution across the
involved processing nodes. Color-coding can be useful to distin-
guish the function or nature of the involved tasks and the borders
between the containing processing nodes.

A process–thread structure model describes the distribution and
mapping of functional elements to runtime platform elements such
as processes and their threads. Fig. 14 presents an example of a
process–thread structure model, which describes the process and
thread structure of a data-intensive feature of the Philips MRI sys-
tem. The information described in the model includes an instance
Fig. 14. Example of a process–thread structure model.

ystem

r
r
i
c
s
s
p
s

5
•

•

•

•

•

5

p
c

•

•

T.B. Callo Arias et al. / The Journal of S

esented as containers of threads. At the same time, threads are
epresented as containers of code modules, runtime events, and
nterfaces to data and hardware resources. (2) The notations of
ontainers can be usual boxes, and lines connecting them as repre-
entation of control and data flow relationships. Richer notations
uch as UML and stereotyping are other alternatives. For exam-
le, the containers in the model of Fig. 14 are represented using
tereotypes to distinguish processes from threads.

.3.3. Guidelines to construct an execution concurrency view
Runtime concurrency information should be based on actual run-
time information which can be extracted from runtime data
collected using tools such as Process monitor (Russinovich, 2010)
or the system’s logging mechanisms.
The development organization should choose a set of execution
scenarios (e.g., test cases and integration tests) that are represen-
tative for the system functionality to be described.
To construct concurrency workflow models, the architect has
to identify the important tasks that build the chosen scenar-
ios. The identification of the tasks includes the identification
of the start time and duration of each task. In addition, the
distribution of the tasks should be also identified, preferably
from runtime data though design knowledge can be useful
as well.
To construct process–thread structure models, the architect has
to identify the important runtime processes involved in the exe-
cution scenario under analysis. This is especially necessary for
systems with large and complex runtime process and thread
structures. To do so, the architect can analyze runtime data using
design knowledge to filter out less important process and threads.
When using runtime data, it is important that tasks, processes,
and threads are identified with meaningful names rather than
numeric identifications. This is important to match runtime infor-
mation to system design information.

.3.4. Guidelines to use a execution concurrency view
The information described by workflow concurrency and

rocess–structure models help stakeholders to analyze the runtime
oncurrency of a system in the following ways:

Architects and designers may use concurrency workflow models
to gather high-level information about elements that run con-
currently as input for the downstream planning of development

activities.
Testers can use concurrency model in the definition, design, and
execution of test and verification procedures. For example, testers
can use concurrency workflow models as evidence to track and
s and Software 84 (2011) 1447– 1461 1459

communicate the desired or undesired variations of the runtime
concurrency of the system.

• Software engineer can use concurrency models to learn and ana-
lyze how the pieces of code they implement are instantiated and
deployed at runtime.

• Stakeholders concerned about resource usage can use
process–thread structure models to understand the runtime
structure that governs a given resource usage. For example, the
model in Fig. 14 supports or complements the one in Fig. 12.

• In overall, execution concurrency models are useful to share and
communicate technical knowledge between operating system,
platform supporters, and architects and designers.

6. Conclusions

We described how to define, validate, and document a set of exe-
cution viewpoints to support the construction and use of execution
views for an existing large software-intensive system based on the
requirements of its development organization. The contribution of
our approach is three-fold. First, we have shown and conceptual-
ized how to use (customize and extend) predefined viewpoints in
practice. Second, the definition approach using predefined view-
points is a valuable complement (e.g., to scope and guide) to more
general-purpose definition methods such as (Koning and van Vliet,
2006). Moreover, our approach is repeatable in other organiza-
tions and research groups. The practitioners involved in the phases
of the approach confirmed that a similar approach could be used
to upgrade or define other viewpoints for their specific system.
Third, other development organization and researchers can reuse
and extent the documented execution viewpoints to support the
construction and use of execution views for other systems. This is
specially recognized by the new CD2 version of the ISO/IEC 42010
std., which referees to our initial definition of the approach (Callo
Arias et al., 2009) as a representative example of how to define
viewpoints.

Acknowledgments

We would like to thank the Software Architecture Team and
the software designers of the MRI scanner in Philips Healthcare,
in particular Krelis Blom and Danny Havenith. We also extend our
gratitude to Rob van Ommering, Wim van der Linden, and our Dar-
win colleagues for their feedback and joint work.
This work has been carried out as a part of the Darwin project
at Philips Healthcare under the responsibility of the Embedded
Systems Institute. This project is partially supported by the Dutch
Ministry of Economic Affairs under the BSIK program.

1 ystems and Software 84 (2011) 1447– 1461

A

 Date:

me Struc ture or Concurr ency Mod els
ment Execution Architecture and the concurrency or behavior viewpoints from the
sed by t his section an d some of t he diag rams of t he run time structure of t he MRI

ation of this sec tion ?

3. Actual audience: (roles*)
* Roles within PH MRI e.g. architect, designer, im plemen ter, maintainer, etc.-

rchitec ting and des ign ac tivities
 sess ion)

tua l Desired Commen ts and brief answers on how the ac tivity i s add ressed

s for an i mproved version of this sec tion

l and design) conce rns addresse d by a concurr ency view point
erviewee may add some specific con cerns

ctua l Desired Commen ts or brief answers on how the conce rn i s add ress ed

nd representation of i nformation
untime views: Figure 1 and Figure 2)

Poss ible alternatives Comments and brief answers

Sys tem Overview Detail
s?
460 T.B. Callo Arias et al. / The Journal of S

ppendix I. Example of a model-specific questionnaire

AD Project name: Buil ding the Execution Arch itec ture of the MRI Sys tem
Domain: Team:
Activity: Review of Exec ution Architec ture Documentation
Purpose of the ac tivity:

Review Session: Runti
In this session, we review in detail the section Runtime structure of the docu
literature. The review is cen tered in discuss ing in de tail the concerns addres
system execution.
1. Creation and maintenance ove rview:

- Is the re any spec ific contribu tor or source of i nformation?
- Besides the gu ideli nes of the 4+1 model, what trigge red the cre
- What was the valida tion of the i nformation of this sec tion?
- How oft en i s this sec tion going to change?

2. I ntended audience : (roles*)
Hardware an d Soft ware designers and architects

4. Usage w.r.t. a
The tailoring of t he list of activities is ba sed on t he overview review (previou s

Activity Intend ed Ac

Commun ication among development units
Conformance of do wnstream design and de velopmen t
Analysis & Design workflow
Education and t raining
Commun ication with customers and/or providers
Analysis of system quality att ributes
Analysis of alterna tive architectures/designs

Othe r spec ific ac tivitie
Plann ing and crea tion of vision and roadmap s

5. Usage w.r.t. spec ific (architec tura
Concerns are collected f rom t he literature, ne vertheless we expect that t he int

Concern Intend ed A

Process /Th read Structure
Show t he mapping of fun ctional elemen ts t o
Process /Th read(s)
Desc ribe t he mapp ing of fun ctional elements t o Process
Explain the map ping of fun ctiona l elemen ts t o Process
Inter- process comm unication (Which are/why)
State manag emen t (states, t ran sitions, causes, and eff ects)
Synchronization an d integrity (e.g. mutex and sha red da ta)
Startup and shutdown of un it and the aggregate sys tem
Failure (Thread level and process crash) and propagation
Reen trancy and priorities (critical s ections, sha red cod e)

Notes:

6. Des cription a
(in the provided r

Ques tion
What is the a bstraction level of the diagram?
Do you recogn ize the t ype or class of elements desc ribed by edges and node
Do you recogn ize interactions between elemen ts?
Do you understand what happe ned due to interactions?
Do you iden tify the seque nce of interactions
Do you recogn ize what is inside of t he node s?
Can you desc ribe the reason f or grouping elements inside node s?

Can you recognize t he semantic of the different edg es?

Additional Comments

• Att ached mode ls (Sys tem level, Overview level, Detail level)

ystem

R

C

C

C

C

H

H

H

H

I

K

K

M

M

O

P

R

the editorial board of Springer Transactions on Pattern Languages of Programming.
He has published more than 90 peer-reviewed articles in international journals,
T.B. Callo Arias et al. / The Journal of S

eferences

allo Arias, T.B., Avgeriou, P., America, P., 2008. Analyzing the actual execution of
a large software-intensive system for determining dependencies. In: Presented
at 15th Working Conference on Reverse Engineering.

allo Arias, T.B., America, P., Avgeriou, P., 2009. Defining execution viewpoints for
a large and complex software-intensive system. In: Presented at Joint Work-
ing IEEE/IFIP Conference on Software Architecture & European Conference on
Software Architecture.

allo Arias, T.B., Avgeriou, A., America, P., March 2010. Tech. Report: Doc-
umenting a Catalog of Viewpoints to Describe the Execution Architec-
ture of a Large Software-Intensive System for the ISO/IEC 42010 Std.,
http://www.esi.nl/projects/darwin/publications/.

lements, P., Bachmann, F., Bass, L., Garlan, D., Ivers, J., Little, R., Nord, R., Stafford,
J., 2002. Documenting Software Architectures: Views and Beyond. Addison
Wesley.

ofmeister, C., Nord, R., Soni, D., 1999. Applied Software Architecture. Addison-
Wesley.

ofmeister, C., Kruchten, P., Nord, R.L., Obbink, H., Ran, A., America, P., 2007. A
general model of software architecture design derived from five industrial
approaches. Journal of Systems and Software 80, 106–126.

opkins, R., Jenkins, K., 2008. Eating the IT Elephant: Moving from Greenfield Devel-
opment to Brownfield. IBM Press.

unt, G., Aiken, M., Barham, P., Fähndrich, M., Hawblitzel, C., Hodson, O., Larus, J.,
Levi, S., Murphy, N., Steensgaard, B., Tarditi, D., Wobber, T., Zill, B., 2007. Sealing
OS processes to improve dependability and safety. In: 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems. ACM.

SO/IEC-JTC1/SC7, ISO/IEC 42010, 2007. Systems and Software
Engineering—Recommended Practice for Architectural Description of
Software-Intensive Systems.

oning, H., van Vliet, H., 2006. A method for defining IEEE Std 1471 viewpoints. The
Journal of Systems & Software 79, 120–131.

ruchten, P., 1995. The 4 + 1 View Model of architecture. IEEE Software 12,
42–50.

uller, G., 2004. CAFCR: a multi-view method for embedded systems architecting;
balancing genericity and specificity. Ph.D. Thesis, Technical University Delft, The
Netherlands.

uller, G., April 2009. Gaudí System Architecting—A Reference Architecture Primer.,
http://www.gaudisite.nl/info/ReferenceArchitecturePrimer.info.html.

bbink, H., Kruchten, P., Kozaczynski, W., Hilliard, R., Ran, A., Postema, H.,
Lutz, D., Kazman, R., Tracz, W., Kahane, E., November 2008. Report on Soft-
ware Architecture Review and Assessment Version 1. 0., http://philippe.

kruchten.com/architecture/SARAv1.pdf.

hilips Healthcare: Magnetic Resonance Imaging, March 2010. http://www.
healthcare.philips.com/main/products/mri.

ozanski, N., Woods, E., 2005. Software Systems Architecture: Working with Stake-
holders Using Viewpoints and Perspectives. Addison Wesley.
s and Software 84 (2011) 1447– 1461 1461

Russinovich, M., March 2010. The Sysinternals Utilities., http://technet.microsoft.
com/en-us/sysinternals/.

Sozer, H., Tekinerdogan, B., 2008. Introducing recovery style for modeling and
analyzing system recovery. In: Proceedings of the Seventh Working IEEE/IFIP
Conference on Software Architecture (WICSA). IEEE Computer Society.

van de Laar, P., America, P., Rutgers, J., van Loo, S., Muller, G., Punter, T., Watts,
D., 2007. The Darwin Project: Evolvability of Software-Intensive Systems. In:
Presented at Third International IEEE Workshop on Software Evolvability.

van Deursen, A., Hofmeister, C., Koschke, R., Moonen, L., Riva, C., 2004. Symphony:
view-driven software architecture reconstruction. In: Presented at IEEE/IFIP
Working Conference on Software Architecture.

Woodside, C., 2001. Software resource architecture and performance evaluation
of software architectures. In: Presented at 34th Annual Hawaii International
Conference on System Sciences.

Trosky B. Callo Arias received an Engineer’s degree in informatics and systems
from Universidad Nacional San Antonio Abad del Cusco-Peru in 2002, and a Mas-
ter’s degree in computer science from Göteborg University-Sweden in 2005. He is
a Ph.D candidate in the Software Engineering and Architecture Group of Univer-
sity of Groningen. His professional interest includes the architecture and design
of software solutions for high-tech products, embedded systems, and distributed
systems.

Pierre America received a Master’s degree from the University of Utrecht in 1982
and a Ph.D. from the Free University of Amsterdam in 1989. He joined Philips
Research in 1982 where he has been working in different areas of computer sci-
ence, ranging from formal aspects of parallel object-oriented programming to music
processing. During the last years he has been working on software and system archi-
tecting approaches for product families. He has been applying and validating these
approaches in close cooperation with Philips Healthcare. Starting in 2008 he is work-
ing part of his time as a Research Fellow at the Embedded Systems Institute, where
his main focus is on evolvability.

Paris Avgeriou is Professor of Software Engineering in the Department of Math-
ematics and Computing Science, University of Groningen, the Netherlands where
he has led the Software Engineering research group since September 2006. Before
joining Groningen, he was a post-doctoral Fellow of the European Re-search Consor-
tium for Informatics and Mathematics (ERCIM). He has participated in a number of
national and European research projects directly related to the European industry of
Software-intensive systems. He has co-organized several international workshops,
mainly at the International Conference on Software Engineering (ICSE). He sits on
conference proceedings and books. His research interests lie in the area of software
architecture, with strong emphasis on architecture modeling, knowledge, evolution
and patterns.

http://www.healthcare.philips.com/main/products/mri
http://www.healthcare.philips.com/main/products/mri

	Defining and documenting execution viewpoints for a large and complex software-intensive system
	1 Introduction
	2 Predefined execution viewpoints
	2.1 Motivation
	2.2 Identified predefined viewpoints

	3 Eliciting the organization's requirements for execution views
	3.1 Questionnaire design
	3.2 Interviews
	3.3 Identified concepts and concerns
	3.3.1 Execution models
	3.3.2 Metamodel of system execution elements
	3.3.3 Organization concerns related to system evolvability

	4 Initial definition and validation of execution viewpoints
	4.1 Initial definition of execution viewpoints
	4.1.1 Functional mapping
	4.1.2 Execution deployment
	4.1.3 Resource usage
	4.1.4 Execution concurrency

	4.2 Validation of the initial definition of execution viewpoints

	5 Documentation of execution viewpoints
	5.1 Execution profile (formerly called functional mapping)
	5.1.1 Concerns and stakeholders
	5.1.2 Model kinds
	5.1.3 Guidelines to construct an execution profile view
	5.1.4 Guidelines to use an execution profile view

	5.2 Resource usage viewpoint
	5.2.1 Concerns and stakeholders
	5.2.2 Model kinds
	5.2.3 Guidelines to construct a resource usage view
	5.2.4 Guidelines to use a resource usage view

	5.3 Execution concurrency viewpoint
	5.3.1 Concerns and stakeholders
	5.3.2 Model kinds
	5.3.3 Guidelines to construct an execution concurrency view
	5.3.4 Guidelines to use a execution concurrency view

	6 Conclusions
	Acknowledgments
	Appendix I Example of a model-specific questionnaire
	References

