
Integrating Architecture-Centric Methods into Object-Oriented Analysis and
Design

Raghvinder S. Sangwan

The Pennsylvania State University
rsangwan@psu.edu

It has long been known that software systems are
complex. Brooks asserted that much of this complexity
was inherent to the domain: “the systems we produce
are themselves the solutions to complex problems that
are constantly changing; the intangible nature of
software defies our abilities to represent or visualize it
without eliminating essential detail; and it provides the
connective tissue between a vast array of other
systems, both man and machine.” [1] In the twenty
years that have passed since Brooks made those
assertions the scale of systems has grown enormously,
making the problem even more daunting. Fortunately
this period has also seen significant advances in our
understanding of what constitutes complexity in those
systems. We now have catalogs of heuristics,
principles, and patterns that document how to construct
software designs that are extensible, robust, and
comprehendible along with tools and techniques that
identify and highlight when these guidelines are
transgressed. Despite these advances, however, the
problem remains – we continue to develop overly
complex systems.

Hoare states: “there are two ways of constructing a
software design: one way is to make it so simple that
there are obviously no deficiencies; the other way is to
make it so complicated that there are no obvious
deficiencies. The first method is far more difficult.” [2]
Hoare implies, therefore, that while creating simple
designs is anything but easy, it is far easier to create
complicated designs. From our perspective, a design
becomes complicated not because it needs to contend
with the essential complexity inherent in a system but
introduction of excessive complexity that can be an
incidental byproduct of a chosen development
methodology.

Complexity, in its many forms, is a systemic property
of a system, indeed it is an emergent property that
arises from the interdependence and interconnectivity
of the system, both structurally and dynamically.
Consequently, an appropriate approach to system
development likely to keep excessive complexity in
check must be systemic. Mainstream design

methodologies such as Object-Oriented Analysis and
Design (OOAD), however, treat systemic properties
only indirectly or implicitly. The quality of systems
developed using such methodologies, thus, depends
largely on the skill level and experience of its architect.
It has been suggested, therefore, that augmenting these
methodologies with software architecture-centric
methods such as the Quality Attribute Workshop
(QAW) and Attribute Driven Design (ADD) can
provide explicit and methodical guidance to an
architect in creating systems with desirable qualities
[3].

In this tutorial, we will first go through the exercise of
applying OOAD techniques (use case analysis, domain
modeling, and component-based design) for creating
the architecture for a system from the building
automation domain. We then use the techniques
prescribed by the architecture-centric methods (quality
attribute workshop and attribute driven design) for
creating the architecture for the same system. These
two exercises are used to clearly demonstrate the
shortcomings of OOAD. We finally demonstrate how
OOAD can be augmented with architecture-centric
methods to overcome these shortcomings.

References

[1] F.P. Brooks, The Mythical Man-Month: Essays on

Software Engineering, Addison-Wesley, Boston, MA,
1995.

[2] C.A.R. Hoare, “The Emperor’s Old Clothes,”
Communications of the ACM, Vol. 24, No. 2, February
1981, pp. 75 – 83.

[3] Sangwan, R. Neill, C., El Houda, Z. and Bass, M.
“Integrating Software Architecture-Centric Methods
into Object-Oriented Analysis and Design,” Journal of
Systems and Software, Volume 81, Issue 5, May 2008,
Pages 727-746.

