
A Software Architecture Framework
for Quality-Aware DevOps

Elisabetta Di Nitto
Politecnico di Milano

Milan, Italy
elisabetta.dinitto@polimi.it

Pooyan Jamshidi
Imperial College London

London, UK
p.jamshidi@imperial.ac.uk

Michele Guerriero
Politecnico di Milano

Milan, Italy
michele.guerriero@polimi.it

Ilias Spais
ATC

Athens, Greece
i.spais@atc.gr

Damian A. Tamburri
Politecnico di Milano

Milan, Italy
damianandrew.tamburri@polimi.it

ABSTRACT
DevOps is an emerging software engineering strategy entail-
ing the joined efforts of development and operations people,
their concerns and best practices with the purpose of realis-
ing a coherent working group for increased software develop-
ment and operations speed. To allow software architecture
practitioners to enrich and properly elaborate their archi-
tecture specifications in a manner which is consistent with
DevOps, we surveyed a number of DevOps stakeholders. We
studied concerns and challenges to be tackled with respect
to preparing a software architecture which is DevOps-ready,
i.e., described in all details needed to enact DevOps sce-
narios. Subsequently, we introduce SQUID, that stands for
Specification Quality In DevOps. SQUID is a software archi-
tecture framework that supports the model-based documen-
tation of software architectures and their quality properties
in DevOps scenarios with the goal of providing DevOps-
ready software architecture descriptions. We illustrate our
framework in a case-study in the Big Data domain.

CCS Concepts
•Software and its engineering → Software notations
and tools; Designing software; System description lan-
guages;

Keywords
Architecture Frameworks, Model-Driven Design, QoS, QoD

1. INTRODUCTION
Today, most organizations face high market pressure, and

their supporting ICT (i.e., Information and Communication

Technology) departments are struggling to accelerate the de-
livery of applications and services while preserving produc-
tion and operations stability [6]. On one hand, ICT opera-
tors lack understanding of the application internals including
system architecture and the design decisions behind archi-
tectural components [2, 4]. On the other hand, development
teams are not aware of operation details including the infras-
tructure, its limitations and benefits. In response to these
challenges, DevOps emerges as a set of software engineering
strategies to create a more cohesive working group inter-
mixing development and operations people, concerns and
approaches with the aim of increasing the speed to which a
design changes reaches operational software within specified
quality constraints [2].

In this paper we aim at enriching the state of the art in
DevOps with an architecture framework called SQUID, that
stands for “Specification Quality In Devops”. The SQUID
framework shows the following key features: (a) is based on
the empirical investigation of software architecture stake-
holders, concerns [1] and challenges around specifying and
using software architectures in DevOps scenarios; (b) allows
the functional and non-functional specification of software
architectures in a manner which is most consistent with De-
vOps scenarios; (c) extends a well known software architec-
ture framework, i.e., Philippe Kruchten’s original 4+1 Views
[9]; (d) conforms to the standard conceptual overview pre-
sented in the ISO / IEC 42010 standard for architecture
description [8].

Illustrating SQUID we observed that it does indeed pro-
vide a valuable starting point to elaborate strategic software
architecture descriptions within DevOps scenarios -these de-
scriptions are in fact, DevOps-ready, i.e., they provide full
details concerning the architectural aspects and properties
needed in DevOps scenarios. Nevertheless, using SQUID
in action as part of a Big Data application description fea-
turing DevOps, we also observed that much work still lies
ahead around several challenges, such as: (a) using SQUID
descriptions as recipes in DevOps-based refactoring; (b) us-
ing SQUID descriptions for DevOps-based coordination and
division of work; (c) provide appropriate DevOps tooling for
the proposed architecture framework.

The rest of this paper is structured as follows. Section 2
elaborates on our investigation of the DevOps architecture



landscape. Sections 3 and 4 outline the original 4+1 frame-
work and how it is augmented towards elaborating SQUID
while Section 5 applies SQUID to elaborate a Big-Data ap-
plication description from a real-life industrial scenario. Fi-
nally, Section 6 concludes the paper hinting to future work.

2. DEVOPS PEOPLE AND THEIR ISSUES
By means of market-scanning and Business-Model Can-

vas modelling [5] within the DICE EU H2020 project con-
sortium’s industrial partners we observed several key stake-
holders, concerns and challenges in the DevOps context -
we argue that understanding and covering these is critical
to DevOps success. To understand the DevOps dimensions
inherent in our scenario, we carried out over 30+ interviews
as well as 3 focus-groups with DICE industrial partners
concerning what are the practical requirements to support
DevOps-based software development and operations for big
data applications. We analysed results through coding and
scenario analysis. The results of this exercise are outlined
as follows.

2.1 Relevant Stakeholders and Concerns
Table 1 outlines the stakeholders that play a key role in

specifying and using software architectures within DevOps
scenarios according to our investigation. Column 1 names
the stakeholder while Columns 2 and 3 outline a brief de-
scription of the stakeholder’s role in the context of DevOps
and the concerns this role entails.

The table essentially shows how the stakeholders and roles
typically involved in software engineering [13] are accompa-
nied by a number of stakeholders (e.g., Middleware commu-
nities or standardization bodies) that do not have a direct
relation to the product but account for the product’s or-
ganizational stability, e.g., so that the DevOps cycle may
be enacted in a long-lived fashion and without hindrance.
Conversely, imagine a scenario where a product is being de-
veloped in a DevOps fashion but software architects and
product owners do not account for standards or middleware
providers / communities. In this same scenario, proceeding
without measurement or quantification of the middleware
community health may lead to community failure and mid-
dleware discontinuation.

2.2 DevOps: Industrial Challenges
The following key challenges were elicited as part of our

investigation:

1. Lack of automated tools for quality-aware De-
vOps: industries recognise the lack of development
and continuous delivery of products that has been ver-
ified in terms of quality assurance. In other words,
there exists many different frameworks that software
vendors can adopt in order to develop their applica-
tions. However, there is no automated mechanism to
enable them to verify software quality across such dif-
ferent technological stack in a automated fashion.

2. Lack of automated tools for DevOps-based ar-
chitecture improvements: In order to develop a
modern IT application, software vendors require to
adopt an architectural style in order to integrate differ-
ent components of the system. During development,
the complexity of such architecture will be increased
and there is no automated tool to enable designer to

improve the architecture based on performance bot-
tlenecks and reliability issues that have been detected
based on monitoring of the system on real platforms.

3. Lack of tools and methods adaptable to hetero-
geneous DevOps maturity in industry: Devel-
oping and maintaining modern IT applications (e.g.,
data-intensive applications) is key to IT market diver-
sity, spanning from big industrial players and small-
/medium-enterprises. However, there exists a huge
variety of software processes in this diversity. Such
diversity is seldom taken into account from a method-
ological and technological standpoint. For example,
very few evaluations show the applicability of certain
data-intensive design methods within IT companies
consistent with CMMI (Capability Maturity Model In-
tegration) Level 4 (Quantitatively Managed) or level 2
(Managed), yet, the industrial adoption of those design
methods may depend greatly on such evaluations.

4. Lack of Continuous Analytics Frameworks for
Business Needs and Technical QoS: All types of
organizations need to move fast, and need to align IT
assets to their needs (create new assets or adapt ex-
isting ones). Therefore, ICT departments need to as-
sure that their ICT platforms and infrastructures are
flexible enough to adopt business changes, regardless
of the type of IT infrastructures used to create those
data intensive applications, whether they are built us-
ing open-source software or data services offered by
public cloud providers. In other words, they should
avoid technological lock-in as much as possible.

5. Lack of Explicit Support for Continuous Ar-
chitecture Refactoring: The tenets behind DevOps
entail producing actionable architectures that can be
operated and monitored as soon as possible so that as-
pects such as efficiency, reliability and safety of appli-
cations can be improved incrementally in testing and
production environments, with metrics and data that
feedback directly and quickly to development teams for
faster testing, improvement and adjustment to meet
service level goals.

6. Continuous Fine-Grained Application Monitor-
ing and Anomaly Detection: Access to live data
gathered by monitoring engines should also provide
performance and reliability data for observed appli-
cations in production to gauge the need for identifying
outliers and detecting any anomaly that may harm
continuous business processes that are dependent to
such data intensive applications. Moreover, such mon-
itoring data should assist application architects and
developers in building toward an optimized target in-
frastructure.

7. Continuous Configuration Optimization: mod-
ern day applications typically spend expensive resources
that are offered to companies via public clouds. There-
fore, it is of utmost importance to optimize such appli-
cations in order to demand less resources and produced
more output. Therefore, organizations require to have
automated tools to optimally configure such applica-
tion without the need to hire experts to optimize their



Table 1: Critical DevOps Stakeholders and Concerns, An Overview.
Stakeholder Description Concerns

Systems Designer /
Architect

In the Context of DevOps, the software and systems designer or
software architect becomes the reference figure with the

responsibility of setting up the general conceptual overview (i.e.,
the architecture) of the product to be as well as its platform and

infrastructure conterparts. Finally, the DevOps software
architect[2] is the reference figure adapting the software

architecture specification to welcome feedback streams from
systems’ operation.

Using Architectures as
Work-overview and division

across the DevOps team;
Architecture quality by
means of -Ops feedback;
Architecture profiling to

Dev and Ops sides of teams;
Architecture monitoring;

Systems Developer /
Programmer

In the context of DevOps the programmer becomes a technical
person capable of developing a system while taking into account

its operational aspects as well. The DevOps programmer is
capable of assessing the impact of architectural changes both in

software development and operations.

Meeting operations’
expectations; mirroring the

infrastructure-as-code
counterpart [2];

Infrastructure
provider

In the context of DevOps a IaaS provider is any person or
organization technical and operationally responsible for making

the service architecture usable by cloud service users.

Standardization;
Interoperability;

Monitoring;
Accountability[10, 11];

Quality Assurance
Expert / System

Manager

The QA expert or systems manager is any person capable in
evaluating the non-functional aspects and properties of the

architecture (e.g., performance, privacy, etc.).

Architecture Iterative
Enhancement; Architecture

Modifyability [3];
System Tester The tester transforms architectural and development information

into viable tests that can be (re-)executed in an automated
fashion;

Test automation; Test
serialization; Test remote

executability;
Middleware Provider DevOps solutions are nestled around many open- and

closed-source products that are assembled together and
choreographed by adeguate middleware. Middleware providers
are organizations, communities or people responsible for said

middleware and their concerns are focused on the reliability of
their product as much as the organizational health [12] of the
surrounding community or organization since the middleware

reliability rests heavily, e.g., on the engagement of the
surrounding community in improving it in a DevOps fashion.

Middleware reliability;
Community health;

Standardization
Body

In the context of DevOps, standardization bodies cover the role
of offering ways to speed-up by on-the-fly composition by

standardization. For example, the use of TOSCA can ensure the
interoperability between products and services compatible with

and operating according to the TOSCA standard.

Standard adoptibility;
Standard breadth (the
ability to encompass

multiple technologies over
multiple domains);

Standard depth (the ability
to support multiple

granularity and abstraction
levels)

Figure 1: the Social-Sensor App, representing the SQUID development view on the StormFocusedCrawler
component from Fig.3.



applications. This becomes even more critical for ap-
plications that are deployed over large clusters and har-
ness the potential of big data, e.g., for the purpose of
business intelligence and analytics.

From the stakeholders, concerns and challenges outlined above
we observed that: (a) software architecture views conform-
ing to the ISO/IEC 42010 Standard must be augmented with
more fine-grained architecture descriptions specific to vari-
ous framework and middleware involved in DevOps applica-
tions development - this is critical to have an overall under-
standing of software architecture traits that are affected by
operational concerns; (b) the software architecture needs to
be augmented with deployable images, i.e., there needs to be
an architectural representation that allows inferring a con-
crete blueprint containing infrastructure, platform as well
as application topology; (c) finally, there needs to be model-
based synchronization of said augmentations and views, to
fully support the DevOps feedback loop.

3. THE 4+1 ARCHITECTURE FRAMEWORK
In response to the DevOps players and challenges previ-

ously outlined in Sec. 2 we observed a number of required
views and notations missing from the state of the art but cu-
riously reminiscent of Philippe Kructhen’s [9] classical 4+1
software architecture views framework. Although similar,
the 4+1 views model required specialisation and additional
re-elaboration. As a result, the DevOps architecture frame-
work we advocate is rather simple and can be interpreted as
a specialisation or refinement of the 4+1 software architec-
ture framework. The original 4+1 framework offered nota-
tions, views and architecture concerns for:

• Logical Software Architecture Views - that is,
representations of architecture elements from a func-
tional perspective, where logical communication, se-
quences of actions and class specifications are typical
concerns;

• Development Software Architecture Views - that
is, representations of architecture elements from the
typical “blueprint” perspective, allowing for authority
management, division-of-work, architecture reasoning;

• Process Software Architecture Views - that is,
representations of architecture elements from a pro-
cess perspective where concurrency, distribution and
other non-functional aspects are discussed, verified and
acted upon;

• Physical Software Architecture Views - that is,
representations of architecture elements as mapped to
the physical nodes or clusters where architecture ele-
ments will exist and function;

• Transversal Scenario Views - these capture the es-
sential scenarios to be supported by the software ar-
chitecture in question or its general operation;

4. THE SQUID FRAMEWORK
Within the scope of the DICE EU H2020 Project, we are

developing conceptualisations and notations to support a
DevOps way of working in the scope of Big Data applica-
tions, where DevOps becomes a key enabler since it allows to

deliver quality results with speed and continuous improve-
ment/innovation. SQUID is our extension to the views origi-
nally intended in the 4+1 model (see Sec. 3) and stems from
five key refinements to Philippe Kruchten’s original notation
for software architecture representation - these refinements
emerged from our industrial study and reflect DevOps-ready
software architectures:

1. the logical architecture view needs to be synchronised
(e.g., by means of model-to-model transformation) with:
(a) a quality verification view for each quality prop-
erty relevant to application domain; (b) for each qual-
ity property in (a), a monitoring view stemming from
the operations view; (c) a process view specific to the
quality verification and monitoring views. This is be-
cause DevOps advocates continuous improvement and
continuous architecting by direct interaction of devel-
opers, designers, infrastructure engineers and middle-
ware operators - as a consequence, software architec-
ture elements in the logical view need to be quickly
transformed into analysable notations with different
levels of granularity (e.g., entire application vs. single
middleware) and the results need to be quickly and
continuously fed back into the architecture.

2. the development software architecture view needs to be
synchronised (e.g., by means of model-to-model trans-
formation) with an operations software architecture
view, i.e., a view that reflects the operational image for
software architectures at hand, e.g., imagine a Hadoop
cluster and the various nodes involved. At the same
time, the operations software architecture view is a
specialisation of the Physical software architecture view
where all elements are (a) mapped to their physical
nodes and (b) able to feed runtime behaviour infor-
mation back to the development software architecture
view. This refinement tackles the lack of explicit sup-
port for continuous architecture refactoring as a result
of direct interaction of design and development arte-
facts with what can be learned from their operation.
As a result of modelling these views, stakeholders in-
volved in design, development, operations and infras-
tructure can join forces in tuning said shared views
with operational and monitoring insights.

3. there needs to be a specific process architecture view
per every software component or framework involved
or used in the architecture since both the single and ag-
gregated performances of these components may need
to be explored incrementally, e.g., think of refining
a data intensive application which features a single
Apache Spark component but with the need for several
optional components, e.g., YARN or Kafka. These ad-
ditions may actually hamper performances rather than
boosting them - as highlighted in Sec. 2 we found that
incremental evaluation is a must-have in DevOps sce-
narios. The separate process views need to be shared
across development and operations people so that, on
the one hand, they can be used to analyse and de-
velop better applications, on the other hand, they can
be used in combination with logical and development
views to infer deployable software architecture descrip-
tions.



Abstract 
Components

Properties

Scenarios

Development

Physical

Operations

Fw. 1

Process 1

Fw. 2

Process n

...

Deployment

Logic
Quality Verification 1

Quality Verification n
Monitoring 1

Monitoring n

...

...

LEGENDA
Software 

Architecture Views
Model-to-Model 
Transformation

Figure 2: the SQUID Architecture Framework, an overview.

4. there needs to be an actionable (i.e., runnable or de-
ployable) version of the physical software architecture
view - this version needs to be consistent with the
infrastructure-as-code paradigm [2], i.e., it needs to
be possible to generate deployable infrastructure code
from the actionable physical view. This is necessary
to support the DevOps feedback loop in possibly co-
evolving the software architecture jointly with the un-
derlying infrastructure. Also, this view is “fed” con-
tinuously to the operations view, e.g., to elicit and act
upon runtime feedback. Finally, this view is inferred
directly from other architectural representations that
contain process, logical structure and properties of ar-
chitecture specifications.

5. Finally, much like the transversal scenario view from
the 4+1 framework, a single unifying view shall en-
able the specification of an abstract component-based
software architecture representation. However, in the
context of DevOps this representation is scenario- and
property-driven since: (a) it shall allow the specifica-
tion of the scenarios and use-cases that the architecture
is supposed to support; (b) it shall allow the mapping
of said scenarios to software architecture elements, for
example, a word-counting scenario must be mapped
to a batch-processing component; (c) it shall allow the
mapping of desired quality of service (QoS) and qual-
ity of data (QoD) properties with specific architecture
elements, for example, lossless word-counting shall be
mapped to a fault-tolerant batch-processing compo-
nent. The scenario and property driven specification
is also consistent with the intended use of descriptions
such as TOSCA, i.e., the “Topology and Orchestration
Specification for Cloud Applications”.

A high-level overview of the SQUID architecture frame-
work is outlined in Fig. 2. At the center of the framework,
a single abstract view specifying abstract components, their

properties and the scenarios they support. Around the cen-
ter, a number of ancillary views that cover logic, quality ver-
ification, development, operations/monitoring, process and
physical representations of software architectures.

5. SQUID IN ACTION: A CASE FROM IN-
DUSTRY

To illustrate and evaluate the workings of SQUID we ap-
plied the principles coded in it to describe the application
architecture owned by one of the industry partners part of
the DICE project consortium. More in particular, our part-
ners in ATC Inc. own a social-sensing application that har-
nesses Storm-based complex-event processing to mine data
from online sources and elicit essential topic-based informa-
tion abstractions called DySCOs.

In the context of the social-sensing application in question,
we provided our partners with several diagrams including:
(a) a software architecture view that describes the high-level
overview of the application using abstract components (cor-
responding to the SQUID logical architecture view, see Fig.
3); (b) a software architecture view that describes the inner
topological decomposition of the Storm framework instance
running within the social sensing app (Fig. 1, correspond-
ing to the SQUID process architecture view focusing on the
StormFocusedCrawler component from Fig. 3).

To evaluate the resulting architecture description and its
value in refactoring the software architecture in a DevOps
fashion, we inspected the architecture description in a joint
workshop with our ATC partners.

We observed that the architecture description does in fact
offer the right level of detail to enact architecture decision-
making and design refactoring. However, the value of SQUID
representations is still limited, given the lack of actionable
model-2-model transformations that would offer the automa-
tion layer intended behind SQUID. In the Sec. 6 we discuss
further this limitation and our finding, with a plan to tackle
it in the rest of the DICE EU H2020 project agenda.



Figure 3: the Social-Sensor App, representing the SQUID Logic View.

6. CONCLUSIONS AND FUTURE WORK
DevOps is industrial software engineering’s response to

the increasing “need for speed” emerging within current IT
markets. In layman’s terms, DevOps entails a series of
strategies that are aimed at reducing the friction and timing
in delivering and operating an architectural change, feature
or improvement [2]. In so doing, DevOps promises to de-
liver software speed in a shorter time-span. However, we ob-
served that specifying software architectures such that they
can work in DevOps scenarios is no easy task.

First, this paper describes the DevOps architecture land-
scape by outlining the key stakeholders, concerns and chal-
lenges in DevOps scenarios.

Second, we proposed SQUID, a software architecture frame-
work [1] as a refinement of the widely known and used 4+1
model originally introduced by Kruchten [9].

Finally, by applying SQUID on a real-life industrial sce-
nario, we savoured SQUID’s pros and limitations. We found
that SQUID offers a valuable basis for describing and (ten-
tatively) achieving quality in DevOps scenarios but much
work stil lies ahead with using software architecture frame-
works to achieve Quality-aware DevOps especially in terms
of tooling, applicability and user-friendliness. In the future
we plan to apply SQUID in action within the DICE H2020
EU project for the purpose of fully describing DevOps-ready
software architecture descriptions in the context of Big Data
applications. In so doing, we plan to support SQUID from a
methodological and tooling perspective by refining the (soon
to be released) DICE IDE to support the SQUID architec-
ture framework and the transformations intended within it,
for which we already began a preliminary specification [7].

7. ACKNOWLEDGEMENTS
The authors’ work is partially supported by the European

Commission grant no. 610531 (FP7 ICT Call 10), SeaClouds
and by the European Commission grant no. 644869 (H2020
- Call 1), DICE.

8. REFERENCES
[1] Bass, L., Clements, P., and Kazman, R. Software

Architecture in Practice. Addison Wesley, 1998.

[2] Bass, L. J., Weber, I. M., and Zhu, L. DevOps - A
Software Architect’s Perspective. SEI series in software
engineering. Addison-Wesley, 2015.

[3] Bengtsson, P., Lassing, N., Bosch, J., and van
Vliet, H. Architecture-level modifiability analysis
(ALMA). Journal of Systems and Software 69, 1–2
(Jan. 2004), 129–147.

[4] Bersani, M. M., Marconi, F., Tamburri, D. A.,
Jamshidi, P., and Nodari, A. ”continuous
architecting of stream-based systems”. 115–121.

[5] Fritscher, B., and Pigneur, Y. Visualizing
business model evolution with the business model
canvas: Concept and tool. In CBI (1) (2014), IEEE,
pp. 151–158.

[6] Gebert, S. Devops und continuous delivery, 7 2014.

[7] Guerriero, M., Tajfar, S., Tamburri, D. A., and
Nitto, E. D. ”towards a model-driven design tool for
big data architectures”. In proceedings of the 2nd
International Workshop on Big Data Software
Engineering - BIGDSE (2016), IEEE.

[8] ISO/IEC/(IEEE). ISO/IEC 42010 (IEEE Std)
1471-2000 : Systems and Software engineering -
Recomended practice for architectural description of
software-intensive systems, 07 2007.

[9] Kruchten, P. The 4+1 View Model of Architecture.
IEEE Software 12, 6 (1995), 45–50.

[10] Tamburri, D. A., and Lago, P. Satisfying cloud
computing requirements through agile service
networks. Proceedings of SERVICES 2011 (2011).

[11] Tamburri, D. A., Lago, P., Dorn, C., and
Hilliard, R. Architecting in networked organizations.
In WICSA (2014), IEEE Computer Society,
pp. 247–250.

[12] Tamburri, D. A., Lago, P., and van Vliet, H.
Organizational social structures for software
engineering. ACM Comput. Surv. 46, 1 (2013), 3.

[13] van Vliet, J. C. Software engineering - principles
and practice (3. ed.). Wiley, 2008.


